A Case of Increased Density in Rabbit’s Jaw Bone, Evaluated by Cone-Beam Tomography

Srđan D. Poštić*

Clinic of Dental Prosthetic, School of Dental Medicine, University of Belgrade, Belgrade, Serbia

*Corresponding author:  Srđan D. Poštić, PhD.  Clinic of Dental Prosthetic, School of Dental Medicine, University of Belgrade. 4, Rankeova, Belgrade, 11000, Serbia. Tel:+381-2435-719. E-mail: srdjan.postic@stomf.bg.ac.rs

Published: June 25, 2013


Reduced mineral content affects the trabecular microstructure in the jawbones and skeletons of animals. The aim of this study was to ascertain the benefits in terms of increased bone density in the region of the lateral teeth in the upper and the lower rabbit jaws after application of a therapeutic solution of calcitonin and calcium. The solution was injected to the right side of the maxilla and mandible on the lateral teeth, while the left side was the control. Statistically significant increases in density after application of the therapeutic solution were verified in the experimental regions, in front of the maxillary lateral teeth and around the first maxillary molar (Z=-3.824 and Z=-3.826; p=0.000). ANOVA testing has provided evidence on increasing bone density after the use of a therapeutic solution in the experimental regions of the bone (4.324; df1=7; df2=78.775; p=0.000). Cone beam computed technology (CBCT) proved very reliable for assessing the jawbone density in animals, locally applying the additionally therapeutic solution for acceleration of the increment of bone density.

bone remodelling; bone regeneration; bone biology; radiography; animal; mineralized tissue; maxilla.

1. Bellido M, Lugo L, Castaneda S, Roman-Blas JA, Rufian-Henares JA, Navarro-Alarcon M, et al. PTH increases jaw mineral density in a rabbit model of osteoporosis. J Dent Res. 2010; 89(4):360-5.

2. Scarfe WC. Improving the reliability of computerized reformatted radiological images. In: McKinnon CA, editor. Congress Report, ITI World Symposium, April 15-17, 2010; Geneva, Switzerland; 2010. p. 3.

3. Koong B. Has cone beam CT made conventional CT obsolete? In: McKinnon CA, editor. Congress Report, ITI World Symposium, April 15-17, 2010; Geneva, Switzerland; 2010. p. 4.

4. Shafer D. Relationships of various clinical parameters and biochemical markers of bone metabolism in osteoporosis. In: McKinnon CA, editor. Congress Report, ITI World Symposium, April 15-17, 2010; Geneva, Switzerland; 2010. p. 20.

5. Dougherty G. Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis. Med Eng Phys. 1996;18(7):557-68.

6. Apostol L, Boudousq V, Basset O, Odet C, Yot S, Tabary J, et al. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture. Med Phys. 2006;33(9):3546-56.

7. Stoppie N, Pattijn V, Van Cleynenbreugel T, Wevers M, Vander Sloten J, Ignace N. Structural and radiological parameters for the characterization of jawbone. Clin Oral Implants Res. 2006;17(2):124-33.

8. Loubele M, Maes F, Schutyser F, Marchal G, Jacobs R, Suetens P. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2006;102(2):225-34.

9. Yamashina A, Tanimoto K, Sutthiprapaporn P, Hayakawa Y. The reliability of computed tomography (CT) values and dimensional measurements of the oropharyngeal region using cone beam CT: comparison with multidetector CT. Dentomaxillofac Radiol. 2008;37(5):245-51.

10. González-García R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. 2012. doi: 10.1111/j.1600-0501.2011.02390.x.

11. Genant HK, Gordon C, Jiang Y, Lang TF, Link TM, Majumdar S. Advanced imaging of bone macro and micro structure. Bone. 1999; 25(1):149-52.

12. Kropil P, Hakimi AR, Jungbluth P, Riegger C, Rubbert C, Miese F, et al. Cone beam CT in assessment of tibial bone defect healing: an animal study. Acad Radiol. 2012;19(3):320-5.

13. Dvorak G, Gruber R, Huber CD, Goldhahn J, Zanoni G, Salaberger D, et al. Trabecular bone structures in the edentulous diastema of osteoporotic sheep. J Dent Res. 2008; 87(9):866-70.

14. Cankaya AB, Erdem MA, Isler SC, Demircan S, Soluk M, Kasapoglu C, et al. Use of cone-beam computerized tomography for evaluation of bisphosphonate-associated osteonecrosis of the jaws in an experimental rat model. Int J Med Sci. 2011; 8(8):667-72.

15. Fuster-Torres MA, Penarrocha-Diago M, Penarrocha-Oltra D, Peñarrocha-Diago M. Relationships between bone density values from cone beam computed tomography, maximum insertion torque, and resonance frequency analysis at implant placement: a pilot study. Int J Oral Maxillofac Implants 2011; 26(5):1051-6.

16. Mah P, Reeves TE, McDavid WD. Deriving Hounsfield unit using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 2010; 39(6):323-35.

17. Park CH, Abramson ZR, Taba M, Jin Q, Chang J, Kreider JM, et al. Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol. 2007; 78(2):273-81.

18. Santi P, Colombo P, Bettini R, Catellani PL, Minutello A, Volpato NM. Drug reservoir composition and transport of salmon calcitonin in transdermal iontophoresis. Pharm Res. 1997; 14(1):63-6.

The fully formatted PDF version is available.

Download Article

Int J Biomed. 2013; 3(2):122-126. © 2013 International Medical Research and Development Corporation. All rights reserved.