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Abstract
Interleukin-37 (IL-37), previously known as IL-1F7, is a member of the IL-1 family of cytokines. There are five basic 

subtypes of IL-37, including IL-37a, IL-37b, IL-37c, IL-37d, and IL-37e.  Like other members of the IL-1 family, IL-37 is initially 
expressed as an immature precursor protein that needs to be processed enzymatically by caspase-1 to generate the bioactive protein. 
However, unlike most other members of the IL-1 family, IL-37 induces anti-inflammatory activities in IL-37 receptor-positive 
target cells. IL-37 functions as an extracellular protein by binding to the IL-18 receptor, IL-18R, and an intracellular protein via its 
interaction with SMAD family member 3 (SMAD3). This article reviews recent findings regarding the IL-37 protein maturation 
process and the biological functions mediated by this cytokine.(International Journal of Biomedicine. 2024;14(2):209-216.)
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Abbreviations
AMPK, AMP-activated kinase; DC, dendritic cell; Dok, 
downstream of kinase; ERK1/2, extracellular signal-regulated 
kinase 1/2; IL-18BP, IL-18 binding protein; IL-1F, IL-1 
family; LPS, lipopolysaccharide; Mer, a receptor tyrosine 
kinase expressed in monocytes, epithelial, and reproductive 
tissues; MAPK, mitogen-activated protein kinase; NLRP3, 
NOD-, LRR-, and pyrin domain-containing protein 3; NF-
κB, nuclear factor kappa B; SIGIRR, single immunoglobulin 
IL-1-related receptor; Tregs,  regulatory T cells; TGF-β, 
transforming growth factor-beta; TLR, toll-like receptor; 
USP, ubiquitin specific protease; VEGF, vascular endothelial 
growth factor. 

Biological Characteristics of IL-37   
Interleukin (IL)-37, commonly known as IL-1F7, was 

discovered in 1999/2000 by searching human-expressed 
sequence tag databases and sequencing the IL-1 gene cluster 
located on human chromosome 2.(1-3) IL-37, a member of 
the IL-1 family, is a potent anti-inflammatory cytokine with 
immunomodulatory effects.(4) 

The IL-37 gene, located on chromosome band 2q12.2 
between the IL-1β and IL-36γ genes, with a length of 3.617 kb, 
contains 6 exons.(5) The IL-37 gene has a molecular weight of 
about 17~25 kDa.(6) Alternative splicing of IL-37 pre-mRNA 
generates five cytokine isoforms, including IL-37a, IL-37b, 
IL-37c, IL-37d, and IL-37e.(7) Exons 1-3 encode unique 
N-terminal sequences of IL-37 that possess a caspase-1 
cleavage site and can be processed to its mature form.(8,9) The 
action of IL-37 is mediated by a β-barrel structural unit in its 
secondary structure.(10) The 12-β-strand-containing proteins 
may be formed by amino acid sequences encoded by exons 
4, 5, and 6.(11-13) The 12-hypothetical β-strand structural units 
that constitute the β-trefoil secondary structure of IL-37 are 
responsible for the protein’s function. IL-37a (encoded by 
exons 3–6), IL-37b (encoded by exons 1, 2, 4–6), and IL-37d 
(encoded by exons 1, 4–6) contain the encoding sequences of 
12 β-strands (exons 4–6) and are speculated to be functional 
cytokines. IL-37c (encoded by exons 1, 2, 5, and 6) and 
IL-37e (encoded by exons 1, 5, and 6) are predicted to be 
nonfunctional because of the lack of exon 4 encoding for β- 
trefoil secondary structure.

The expression of IL-37 isoforms is tissue-specific. 
For example, the brain, kidney, heart, bone marrow, and 
testis express IL-37a, IL-37b, IL-37c, IL-37d, and IL-37d, 
respectively.(11)

IL-37b, encoded by five of six IL-37 exons (exons 1, 2, 
4–6), is the longest and the best characterized IL-37 isoform, 
and is known to possess the strongest anti-inflammatory 
effects.(11,14) IL-37b is detected in lymph nodes, placenta, 
colon, lung, kidney, testis, thymus, and uterus(15,16) and acts as 
an anti-inflammatory cytokine. IL-37b inhibits the expression 
of multiple pro-inflammatory cytokines, such as IL-1α, IL-1β, 
IL-6, and TNF-α. (6,17-20)

Isoform IL-37a, encoded by exons 3, 4, 5, and 6, does 
not contain exon 1, but it is the only variant that contains exon 
3, which encodes a unique N-terminus.(10,11,21) Some studies 

indicate that IL-37a is protective against hepatic ischemia–
reperfusion injury.(9) However, further investigations are 
needed to better understand IL-37a functions.

IL-37c and IL-37e probably could not represent a 
functional form of a cytokine. IL-37e, encoded by exons 1, 
5, and 6, cannot bind to IL-18R because it lacks exon 4.(21,22)

IL-37d, encoded by exons 1, 4, 5, and 6, inhibits the 
activation of TNF-α-induced NF-κB in T cells. It is a positive 
feedback loop. The downregulation of the NF-κB pathway 
reduced the production of TNF-α, which lately abolished its 
stimulation to NF-κB activation.(23) Besides, IL-37d relies on 
the IL-1R8 receptor-mediated pathway to inhibit NLRP3(9,23) 
(Figure 1). The mature IL-37d could translocate into the nucleus, 
interacting with Smad3 and impacting its nuclear translocation 
to inhibit pro-inflammation, which is similar to IL-37b.(9) 

Balanced selection keeps several human IL37 gene 
variations in the human evolution process. There have been 
14 IL-37 protein variants found in various human populations. 
“Var1,” “Var2,” and “Ref” are three major variants occupying 
over 97% of those IL-37 protein variants.(24) Var2 induces a 
stronger, shorter-lived immune response due to preferential 
proteasome degradation compared to Var1 and Ref.(25)

Biological Activities of IL-37
IL-37 maturation process

Upon interaction with Smad3, IL-37 translocates into the 
nucleus, resulting in biological activity and the generation of 
its mature form via caspase-1 activity, although the mechanism 
requires further investigation.(26) Pan-caspase inhibition does 
not completely inhibit IL-37 processing, suggesting other 
proteases may be involved(26) (Figure 2).

The caspase-1 cleavage site maps between amino acid 
residues D20 and E21 on exon 1.(22,26) IL-37D20A-mutant 
cells have less mature IL-37 and lower rates of IL-37 nuclear 
translocation. However, the mutation does not completely inhibit 
IL-37 processing, indicating that other caspase-1 cleavage sites 
or other proteases may mediate IL-37 maturation.(27)

Fig. 1. IL-37d pathways for the inhibition of NLRP3 transcription.
IL-37d inhibits NLRP3 transcription by suppressing the NF-
κB signaling pathway. IL-37d inhibits the TNF-α-induced NF-
κB activation via a positive feedback loop. The suppression 
of NF-κB signaling reduces TNF-α levels, thereby inhibiting 
its stimulation of NF-κB activation.(23) IL-37d inhibits 
NLRP3 via the IL-1R8 receptor-mediated pathway.(9,23)
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IL-37 precursor molecules localize in the cytoplasm. 
Some studies show that human blood monocytes stimulated 
with LPS and exogenous ATP mostly secrete precursor IL-
37.(8) To mature, extracellular precursor IL-37 may need the 
activity of myeloid compartment proteases.(8) Moreover, 
the extracellular secretion of the IL-37 precursor does not 
require caspase-1 activity, and it can be secreted upon loss of 
membrane integrity or during cell death. However, the mature 
IL-37 is processed by caspase-1.(8,26) IL‐37 is released via the 
classical ER‐Golgi protein secretion pathway in response to 
LPS stimulation of TLR‐4 on human monocytes.(28,29)

Both the IL-37 precursor and its mature form have 
biological activity, but the mature form binds more stably to 
receptors.(7,30) The caspase-1 cleavage site located on exon 1 
between residues D20 and E21 generates an N terminus exactly 
nine amino acids upstream from the IL-1 family consensus 
sequence (A-X-D) to optimal folding of the beta-fold barrel 
structure for receptor binding of IL-1 family cytokines.(26) For 
example, IL-37b with the N-terminus at valine 46 is more 
active than the IL-37b precursor.(31,32)

Spontaneous dimerization and levels of IL-37 in normal serum
IL-37 mRNA has a ten-nucleotide A-rich homology 

box located at the 3’-end of exon 4 and may cause IL-37 
instability.(28) However, IL-37b or IL-37c mutants that lack 
exon 5 exhibits significantly higher steady-state mRNA 
levels compared with the slight increase associated with exon 
4-lacking IL-37c mutations. Thus, exon 5 may be more critical 
in limiting IL-37 mRNA stability. Exon instability causes IL-
37 instability.(28)

IL-37 acts via a structural shift from dimeric to monomeric 
form.(33) Studies indicate that the symmetrical head-to-head IL-
37b homodimer is created by subunits, including the β3–β4 
loops and the β-trefoil sheet (β2-β3-β11).(10) IL-37 dimers can 
form the mature protein or from the precursor.(27) However, 
spontaneous IL-37 dimerization may cause a loss of biological 
function. When IL-37 levels are low, IL-37 dimers can 

dissociate into monomers. Thus, IL-37 homodimerization may 
be a mechanism for regulating IL-37 function.(27) Additionally, 
the function of IL-37 monomers increases with rising IL-37 
levels.

The reference range for circulating IL-37 levels in 
healthy individuals has not been determined.(34) Its serum 
levels have not been found to vary significantly with gender 
and age.(35,36) However, the serum levels of IL-37 are higher in 
systemic lupus erythematosus patients of Asian ancestry when 
compared with patients of other ethnicities, and IL-37 levels 
(mean of weighted means) are also higher in the Chinese 
population than in non-Chinese populations.(36,37)

Functional and Regulatory Pathways of IL-37
IL-37 regulates inflammation by inhibiting IL-18 functions

IL-37 has two conserved amino acid residues (Glu-35 
and Lys-124) that are structurally similar to the two conserved 
residues of IL-18 (Glu-35 and Lys-89),(38,39) indicating that IL-
37 and IL-18 may have the same receptors (IL-18BP or IL-
18Rα).  IL-18 can play the proinflammatory activity by binding 
the complex IL-18Rα/IL-18Rβ, myeloid differentiation factor 
88 (MyD88) combines with the TIR domain of the IL-18R 
chain to activate the proinflammatory signal.(8,38) The Tightness 
of binding between IL-37 and IL-18Rα is one-fiftieth as close 
as that of IL-18 and IL-18Rα.(27) Thus, IL-37 cannot affect IL-18 
by combining with IL-18Rα. However, IL-37 can bind to IL-
18Rα to form a complex with IL-18BP, a natural antagonist of 
IL-18. IL-37b can bind to IL-18BP to form a complex with IL-
18Rβ, which can reduce the formation of IL-18Rα/β complex 
and thus inhibit the signal transduction pathway of IL-18.(14) 

On the surface of peripheral blood mononuclear cells 
(PBMCs), the IL-37/IL-18Rα/IL-1R8 complex binds to 
MyD88 to block inflammation, which triggers multiple 
switches, including inhibiting the MAPKs, JNK, and NF-κB 
signaling pathways, activating the Mer-PTEN-DOK pathway 
and the pseudo-starvation effects of the mTOR pathway, 
inhibiting TAK1 and Fyn pathways, activating STAT3, Mer, 
and PTEN, and inducing p62 (dok) expression(8,40) (Figure 3).  
IL-1R8, also known as TIR8 or SIGIRR, acts as a negative 
regulator dampening ILR and TLR signaling and as a co-
receptor for human IL-37. Inactivated IL-1R8 prevents MyD88 
recruitment and then impacts the effect of IL-37, suggesting 
that IL-1R8 is the key for the IL-18Rα /IL-37 complex to 
play biological effects.(41) Being an orphan receptor, IL-1R8 
also inhibits IL-1 and toll-like receptor (TLR)-dependent 
inflammation. IL-37 diminishes various inflammatory 
responses through ligation to its receptor IL-1R8/Sigirr. IL-37 
induces Sigirr degradation in the ubiquitin-proteasome system 
through site-specific ubiquitination, which can be reversed 
by a deubiquitinase, USP13.(42) IL-37 activates glycogen 
synthesis kinase 3β (GSK3β), which plays a role in feedback 
control of IL-1R8/Sigirr abundance.(43) Besides, the activation 
of GSK3b promotes Sigirr phosphorylation, ubiquitination, 
internalization, and degradation by disrupting Sigirr association 
with USP13.(43) Thereby, IL-37 downregulates IL-1R8 
expression by disturbing the internation USP13 with IL-1R8 
and by promoting IL-1R8 phosphorylation (Figure 4). 

Fig. 2. The maturation process of IL-37.

The carboxyl domain of IL-37 binds to Smad3, leading to 
Smad3 phosphorylation and the translocation of the IL-37/
Smad3 complex into the nucleus, where IL-37 matures and 
exerts biological activity.(1) Caspase-1 is required for this 
process.(22,27) The intracellular IL-37 precursor exits the cell 
through loss of membrane integrity or frank cell death.(8)
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Under physiological conditions, the concentration of 
plasma IL-18BP is ~20 times higher than that of IL-18, which 
prevents IL-18 from binding to its cellular receptor.(44,45) This 
effect also inhibits IL-18-induced IFNγ expression, indicating 
that IL-18BP has an anti-inflammatory function.(8) However, 
the anti-inflammatory properties of IL-18BP are lost at high 

IL-18BP concentrations, but the mechanism involved needs 
further investigation. The ternary complex, IL-37/IL-18Rβ/IL-
18BP competes with IL-18 for IL-18Rβ, which inhibits IL-18 
function. This complex also competes with IL-18 for IL-18BP.(21) 
It has been shown that IL-37 enhances the ability of IL-18BP to 
inhibit IL-18, but this requires further investigation.(28) Moreover, 
the IL-37/IL-18Rα/IL-18BP ternary complex inhibits immune 
responses and exerts anti-inflammatory effects by repressing the 
expression of IFN-γ and TLR signaling extracellularly.(21)

IL-18 mediates IFN-γ-induced Th1 responses and 
activates NK cell cytotoxic activity, the production of adhesion 
molecules, the synthesis of nitric oxide synthase, and the 
production of chemokines. IL-18 also drives Th2 responses and 
the expression of IL-13 and IL-4 (46,47) (Figures 5 and 6). IL-18 
promotes the synthesis of pro-inflammatory Th1 cytokines, 
including IFN-γ and GM-CSF, and concurrently suppresses the 
production of the anti-inflammatory cytokine IL-10. Thus, IL-37 
impacts IL-18 and then influences the above processes.

Fig. 3. IL-37 pathways.
Smad3 is a transcriptional regulator of the TGF-β 
pathway and plays an important role in IL-37 activity, 
which translocates into the nucleus. Upon caspase-1-
mediated cleavage, IL-37 suppresses the expression 
of proinflammatory cytokines and the recruitment of 
neutrophils into the lungs by inhibiting the activity of 
the NLRP3 inflammasome.(5) IL-37 also inhibits kinases 
in the MAPK and NF-KB pathways and activates the 
anti-inflammatory factors, STAT3, and Mer. IL-37 also 
inhibits mTOR and activates AMPK.(41) On the surface 
of peripheral blood mononuclear cells (PBMCs), the IL-
37/IL-18Rα/IL-1R8 complex binds to MyD88 to block 
inflammation, which triggers multiple switches, including 
inhibiting the MAPKs, JNK, and NF-κB signaling 
pathways, activating the Mer-PTEN-DOK pathway and 
the pseudo-starvation effects of the mTOR pathway, 
inhibiting TAK1 and Fyn pathways, activating STAT3, 
Mer, and PTEN, and inducing p62 (dok) expression.(8,40)

Fig. 4. IL-37-mediated IL-1R8/Sigirr degradation.
IL-37 induces IL-1R8/Sigirr degradation in the ubiquitin-
proteasome system through site-specific ubiquitination, 
which can be reversed by a deubiquitinase, USP13.(42) 

IL-37 activates glycogen synthesis kinase 3β (GSK3β), 
which plays a role in feedback control of IL-1R8/Sigirr 
abundance.(43) The activation of GSK3b promotes Sigirr 
phosphorylation, ubiquitination, internalization, and 
degradation by disrupting Sigirr association with USP13.

Fig. 5. Functional and Regulatory Pathways of IL-37.
IL-37 inhibits IL-18 activity and downregulates IL-18-mediated 
expression of pro-inflammatory factors, the development of 
IFN-γ-associated Th1 responses, the activation of NK cell 
cytotoxic activity, the production of adhesion molecules, the 
synthesis of nitric oxide synthase, chemokine production, 
as well as Th2 responses and the expression of IL-13 and 
IL-4.(47,48) Possible role of IL-37 in modulating the immune 
response of Tregs and function of DCs.(7) IL-37 promotes 
macrophage polarization toward the M2 subtype and inhibits 
macrophage transmigration, apoptosis, and proliferation.(56)

Fig. 6. IL-37 signaling via IL-18.
Excessive IL-18 levels are reduced by IL-18BP,(45) which 
blocks the binding of IL-18 to its cell receptor.(44,46) The IL-
37/IL-18BP/IL-18Rβ complex may compete with IL-18Rβ, 
thereby inhibiting the function of IL-18. IL-18 triggers IFN-
γ-associated Th1 response, the activation of NK cell cytotoxic 
activity, the production of adhesion molecules, the synthesis 
of nitric oxide synthase, chemokine production, as well as 
Th2 responses and the expression of IL-13 and IL-4.(47,48)
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IL-37 interacts with Smad3 to influence gene expression
The binding of IL-37 to Smad3 is mediated by IL-37’s 

carboxyl domain. The resulting complex then translocates to 
the nucleus upon Smad3 phosphorylation (Figure 2), where it 
regulates gene expression. IL-37 interacts with phosphorylated 
and non-phosphorylated Smads to regulate some key enzymes 
and signaling pathways, including focal adhesion kinase, 
proline-rich tyrosine kinase (Pyk2), MAP kinase p38α, signal 
transducer and activator of transcription (STAT), p53, and 
mTOR signaling(48) (Figure 3).

IL-37/Smad3 complexes also compete with Smad2/3/4 
complexes. Smad2 and Smad4 may function in the nucleus by 
competing with IL-37 and reducing the phosphorylation of the 
IL-37/Smad3 complex, although the mechanism is unclear.(9)

Sources of IL-37 and ManLAM-induced IL-37 production
IL-37 is mainly secreted by macrophages. IL-37 can also 

be expressed in monocytes, activated B cells, plasma cells, 
CD4+Treg, dendritic cells, keratinocytes, renal tubular epithelial 
cells, synovial cells, tonsil B cells, gastrointestinal epithelial 
cells, carcinoma cells, testis, thymus, uterus, both in the nucleus 
and the cytoplasm.(7,49) Besides, some cells can secrete the IL-37 
during the stimulation by LPS. Dendritic cells (DCs) can also 
secrete the IL-37 under no stimulated conditions.(8)

Mannose-capped lipoarabinomannan (ManLAM), the 
virulence factor of Mycobacterium tuberculosis (Mtb),(50) 
elevates IL-10 production by DCs while suppressing their 
production of IL-12. It also stimulates the phosphorylation 
of extracellular signal-regulated kinase 1/2 (ERK1/2) and 
p38 in A549 cells and cell surface TLR2 expression. The 
phosphorylation of ERK1/2 and p38MAPK in the type Ⅱ 
alveolar epithelial cell line, A549, induces IL-37 expression.(26) 
Several TLR2 and TLR4 ligands also induce IL-37 expression.
(51) Impairing TLR2 expression markedly suppresses the 
phosphorylation of ERK1/2 and p38, and ManLAM-induced 
IL-37 expression. However, impairing TLR4 function did not 
affect IL-37 expression.(51) The interaction of LPS-activated 
TLR4 and its intracellular adaptor on the cell surface induces 
NF-κB-mediated transcriptional expression of proinflammatory 
genes. TLRs and proinflammatory factors also enhance IL-37 
expression(22) (Figure 7). 

Moreover, IL-37 levels are reported to rise upon treatment 
of relapsed TB, severe TB, and drug-resistant TB. In sputum 
smear (Mtb)+ patients, IL-37 levels fall after short-term anti-TB 
chemotherapy.(52) In vitro, TB-sensitive monocytes continuously 
produce IL-37b without antigen stimulation.(52)

IL-37 and Vascular Regeneration
Granuloma-associated angiogenesis may influence the 

occurrence, progression, and prognosis of diseases. IL-37 is 
a novel proangiogenic factor that promotes endothelial cell 
(EC) proliferation, migration, and capillary formation in 
vitro, as well as vessel sprouting from aortic rings ex vivo.(53) 
Hypoxia, which influences vascular regeneration, upregulates 
IL-37 expression; the IL-37 upregulation is suppressed 
by HIF-1α downregulation.(53) IL-37 also stimulates the 
activation of ERK1/2 and protein kinase B (AKT), which is 
critical for endothelial activation and viability.(54) Additionally, 
IL-37 promotes angiogenesis by modulating inflammatory 
responses(53) (Figure 8). 

However, other studies have suggested that the effect 
of IL-37 on blood vessels is dose-dependent. The dose-
dependent proangiogenic effect of IL-37 might be because 
the impact of many angiogenic factors is biphasic. For 
example, at optimal concentration, PAI-1 has proangiogenic 
functions, but at high concentration, it has antiangiogenic 
activity. At low concentrations, IL-8 enhances the chemotaxis 
and proliferation of ECs, but its effects are diminished at 
high concentrations. IL-18Rα and IL-1R8 play a reserve 
role in angiogenesis in different concentrations.(53) IP-10 and 
thrombospondin suppress angiogenesis at low concentrations 
but at high concentrations, they induce EC chemotaxis.(53)

IL-37 and macrophage polarization 
IL-37 is reported to inhibit macrophage transmigration, 

apoptosis, and proliferation. It enhances the expression of 
THP1-derived macrophages with a higher CD206+ and lower 
CD86+, which are markers of M2 macrophages. IL-37 also 
upregulates the mRNA levels of arginase-1, TGF-β, and IL-
10. Besides, IL-37 suppresses the expression of CD 86, IL-
1β, iNOs, and IL-12, which are markers of M1 macrophages. 
Because M2 macrophages enhance phagocytosis, IL-37-
induced macrophage polarization drives phagocytosis.(55)

Fig. 7. ManLAM and TLR4 enhance the expression of IL-37.
Mannose-capped lipoarabinomannan (ManLAM) 
stimulates the phosphorylation of ERK1/2 and p38 
(A549 cells) and induces TLR2 expression, which can 
induce IL-37 expression. Several toll-like receptor 
(TLR) ligands also induce IL-37 expression. The LPS-
activated TLR4 stimulates NF-κB signaling, thereby 
driving the expression of pro-inflammatory genes. TLRs 
and proinflammatory factors enhance IL-37 production.(5)

Fig. 8. IL-37 and vascular regeneration.
IL-37 upregulates vascular regeneration, but its 
effects can be inhibited by the downregulation of 
HIF-1α expression. IL-37 stimulates the activation of 
ERK1/2 and AKT, which are critical for endothelial 
activation and viability.(53) In addition, IL-37 promotes 
angiogenesis by modulating inflammatory responses.
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The inactive Mtb strain, H37Rv (iH37Rv), polarizes 
macrophages into the M1 subtype and increases the expression 
of CD86, iNOs, IL-12, and IL-1β, while reducing the levels of 
CD206, TGF-β, and IL-10. SiRNA-mediated IL-37 silencing 
enhanced this polarizing phenomenon. However, exogenous 
IL-37 has the opposite effect of polarizing macrophages toward 
the M2 subtype.(55) Although some studies have shown that 
endogenous lL-37 increases nitric oxide levels, exogenous IL-
37 has the opposite effect.(55)

The role of IL-37 in the regulation of autophagy
IL-37 inhibits mTOR signaling and activates the AMPK 

pathway (Figure 3), triggering pseudo-starvation, the main 
autophagy regulation mechanism. Autophagy is thought 
to be critical for the delivery of bacteria to the lysosome 
for degradation, which limits the survival of intracellular 
bacteria. Other autophagy functions include promoting antigen 
presentation and reducing inflammation by sequestering 
and processing microbial components.(56,57) IL-37 influences 
antifibrotic activity associated with autophagy activation in 
fibrotic lungs.(58)

IL-37 modulates the expression of chemokines and cytokines
Some proinflammatory cytokines may promote the 

expression of IL 37, which may inhibit the overproduction 
of proinflammatory cytokines through negative feedback. In 
addition, IL-12, IL-32, and granulocyte-macrophage colony-
stimulating factor (GM-CSF) suppress IL-37 production,(7) 
probably because GM-CSF and IL-4 stimulate the differentiation 
of monocytes to dendritic cells. In human immune cells, 
monocytes, DCs, and T cells may account for 81%–91%, 1%–
2%, and 6%–8% of secreted IL-37.(8) So, GM-CSF and IL-4 
suppresses monocyte-induced IL-37 levels.(22)

IL-37 inhibits the production of inflammatory factors, 
including IL-1α, IL-1β, IL-1Rα, IL-6, IL-17, IL-8, IL-23, 
TNF-α, IFN-γ, IL 4, IL-13, IL-3, IL-14, as well as cytokines 
IL-13, IL-10, and I-309, and the chemokines CXCL-2, CCL12, 
CXCL13, M-GSF, GM-CSF, IACM-1, NLRP3, MIP-2/
CXCLE, MCP-5/CCL12, and BDCA-1/CXCL13, but elevates 
TNF-β and NO levels.(7,8,21,59,60)

IL-37 and various signal pathway 
IL-37 suppresses immune responses by regulating the 

MertK-dependent pathway in monosodium urate crystals-
stimulated THP-1 cells. IL-37 stimulates the AMPK pathway 
to counterbalance inflammation in THP-1 cells. Eosinophils, 
smooth muscle cells, and epithelial cells secrete VEGF, which is 
inhibited by IL-37.(61) IL-37 can also inhibit the Warburg effect by 
activating MAPK signaling and inhibiting the mTOR pathway.(8)

IL-37 exerts immunosuppressive effects by inhibiting 
the activation of the NOD-like receptor family pyrin domain-
containing 3 (NLRP3) inflammasome, which is a critical factor 
in various inflammatory signaling pathways.(62) By inhibiting 
the activity of the NLRP3 inflammasome, IL-37 suppresses the 
production of proinflammatory cytokines and the recruitment of 
neutrophils into the lungs.(63)

IL-37 affects T-cell balance. DCs from IL-37 transgenic 
mice exhibit a reduced ability to activate native T cells and 

antigen-specific T cells and an enhanced ability to cause 
Treg cell polarization. Thus, IL-37 affects T-cell balance and, 
therefore, attenuates T-cell-mediated inflammation.(7,64)

Conclusion
IL-37, through interaction with various receptors, inhibits 

the production of proinflammatory cytokines, promotes the 
proliferation and differentiation of macrophages, and regulates 
autophagy and vascular regeneration. A better understanding 
of the functions of IL-37 may uncover intervention strategies 
for various diseases.
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