Changes in the Rat Blood Lymphocyte Composition in the Dynamics of Acute Irreversible Mesenteric Ischemia

Zoya A. Artamonova, Evgeny V. Namokonov, Marina A. Darenskaya, Natalya V. Semenova, Lyubov I. Kolesnikova, Sergey I. Kolesnikov

International Journal of Biomedicine. 2020;10(3):270-273.
DOI: 10.21103/Article10(3)_OA14
Originally published September 10, 2020


The aim of this research was to study the levels of the main populations of blood lymphocytes in various stages of acute irreversible arterial mesenteric ischemia in an experiment.
Methods and Results: Acute mesenteric ischemia (AMI) was simulated by ligating the cranial mesenteric artery at the mesenteric root. The study was performed on white non-linear male rats, weighing 200±25 g. According to the research protocol, the animals were divided into 3 groups depending on the time of compression of the general blood flow (3 hours (n=10), 6 hours (n=10), and 8 hours (n=10)). As a comparison, we used data from 30 animals (before artery ligation). The main populations and subpopulation structure of lymphocytes (total number of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, NK cells, and the CD4+/CD8+ ratio) were evaluated.
We found that the content of lymphocytes in the venous blood of rats has been directly dependent on the time of ischemia. After 3 hours of AMI development, a statistically significant decrease in the total number of lymphocytes and an increase in the content of CD3+ T cells, CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ ratio occur. After 6 hours of AMI development, a statistically significant decrease in the total number of lymphocytes was persisted. The number of CD8+ T cells decreased, while the level of CD4+T cells increased with increasing the CD4+/CD8+ ratio. In this period, a significant drop in the number of B cells was noted. After 8 hours of AMI development, more pronounced changes were observed concerning various populations of lymphocytes: a statistically significant decrease in the total number of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, and NK cells. It should be noted that during this period, the CD4+/CD8+ ratio increased by more than 3 times relative to the initial indicator.
Conclusion. The significant decrease in the number of venous blood lymphocytes can be used to predict the severity of the disease in a comprehensive examination of patients with AMI.

acute mesenteric ischemia • rats • immunity • lymphocytes
  1. Patel A, Kaleya RN, Sammartano RJ. Pathophysiology of mesenteric ischemia. Surg Clin North Am. 1992;72(1):31-41. doi:10.1016/s0039-6109(16)45626-4
  2. Bala M, Kashuk J, Moore EE, Kluger Y, Biffl W, Gomes CA, et al. Acute mesenteric ischemia: guidelines of the World Society of Emergency Surgery. World J Emerg Surg. 2017;12:38. Published 2017 Aug 7. doi:10.1186/s13017-017-0150-5
  3. Florim S, Almeida A, Rocha D, Portugal P. Acute mesenteric ischaemia: a pictorial review. Insights Imaging. 2018;9(5):673-682. doi:10.1007/s13244-018-0641-2
  4. Ranchordás S, Cunha C, Roque R, Féria L, Maio R. Acute mesenteric ischemia: a review of 50 cases. International Surgery Journal. 2019;6(7):2272-2278.
  5. Liao G, Chen S, Cao H, Wang W, Gao Q.  Review: Acute superior mesenteric artery embolism: A vascular emergency cannot be ignored by physicians. Medicine (Baltimore). 2019;98(6):e14446. doi:10.1097/MD.0000000000014446
  6. Lim S, Halandras PM, Bechara C, Aulivola B, Crisostomo P. Contemporary Management of Acute Mesenteric Ischemia in the Endovascular Era. Vasc Endovascular Surg. 2019;53(1):42-50. doi:10.1177/1538574418805228
  7. Bertoni S, Ballaben V, Barocell E, Tognolini M. Mesenteric ischemia-reperfusion: an overview of preclinical drug strategies. Drug Discov Today. 2018;23(7):1416-1425. doi:10.1016/j.drudis.2018.05.034
  8. Khadaroo RG, Churchill TA, Tso V, Madsen KL, Lukowski C, Salim SY. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury. PLoS One. 2017;12(6):e0179326. Published 2017 Jun 29. doi:10.1371/journal.pone.0179326
  9. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765-774. doi:10.1038/ni.3489
  10. Zhang CX, Wang HY, Chen TX.  Interactions between Intestinal Microflora/Probiotics and the Immune System. Biomed Res Int. 2019;2019:6764919. Published 2019 Nov 20. doi:10.1155/2019/6764919
  11. Artamonova ZA, Namokonov EV, Tereshkov PP, Rusaeva NS. [Method for the diagnosis of intestinal necrosis in mesenteric ischemia in experiment]. Patent RU 2552338 C1, 10.06.2015. Application №. 2014110453/15 of 03.18.2014. [In Russian].
  12. Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008. Published 2019 Nov 28. doi:10.3390/ijms20236008
  13. Kolesnikova LI, Kolesnikov SI, Romanova ED, Chkhenkeli VA, Darenskaya MA, Grebenkina LA, et al. Effect of Preparation Based on Trametes Pubescens Xylotroph Fungi on Lipid Peroxidation in the Blood of Experimental Animals under Conditions of Dark Stress. Bull Exp Biol Med. 2017;162(6):762-764. doi:10.1007/s10517-017-3707-0
  14. Kolesnikova LI, Rychkova LV, Kolesnikova LR, Darenskaya MA, Natyaganova LV, Grebenkina LA, et al. Coupling of Lipoperoxidation Reactions with Changes in Arterial Blood Pressure in Hypertensive ISIAH Rats under Conditions of Chronic Stress. Bull Exp Biol Med. 2018;164(6):712-715. doi:10.1007/s10517-018-4064-3
  15. Kolesnikova LI, Darenskaya MA, Kolesnikov SI. [Free radical oxidation: pathophysiologist's view]. Bulletin of Siberian medicine. 2017;16(4):16-29. [Article in Russian].
  16. Korobkov DM. [Acute intestinal obstruction - a modern vision of developmental mechanisms and debate in the choice of diagnostic and therapeutic tactics]. Bulletin of Science and Practice. 2016;12(13):147-170. [Article in Russian]
  17. Darenskaya MA, Grebenkina LA, Sholokhov LF, Rashidova MA, Semenova NV, Kolesnikov S.I., et al. Lipid peroxidation activity in women with chronic viral hepatitis. Free Radical Biology & Medicine. 2016;100(S):S192.
  18. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Nikitina OA, Lazareva LM, et al. Activity of LPO Processes in Women with Polycystic Ovarian Syndrome and Infertility. Bull Exp Biol Med. 2017;162(3):320-322. doi:10.1007/s10517-017-3605-5
  19. Kolesnikova LI, Kolesnikova LR, Darenskaya MA, Natyaganova LV, Grebenkina LA, Korytov LI, et al. Evaluation of Lipid Peroxidation-Antioxidant Defense System Depending on the Stage of Stress Reaction in Hypertensive ISIAH Rats. Bull Exp Biol Med. 2019;166(5):610-612. doi:10.1007/s10517-019-04402-6
  20. Kolesnikova LR, Darenskaya MA, Rychkova LV, Pogodina AV, Grebenkina LA, Kolesnikov SI, et al. Oxidative stress parameters and state of regional periodontal blood flow in adolescents with arterial hypertension and periodontal diseases. International Journal of Biomedicine. 2018;8(4):301-305. doi:10.21103/Article8(4)_OA6
  21. Darenskaya MA, Kolesnikov SI, Rychkova LV, Grebenkina LA, Kolesnikova LI. Oxidative stress and antioxidant defense parameters in different diseases: ethnic aspects. Free Radical Biology & Medicine. 2018;120(S1):60.
  22. Bairova TA, Kolesnikov SI, Kolesnikova LI, Pervushina OA, Darenskaya M.A, Grebenkina LA. Lipid peroxidation and mitochondrial superoxide dismutase-2 gene in adolescents with essential hypertension. Bull Exp Biol Med. 2014;158(2):181-184. doi:10.1007/s10517-014-2717-4
  23. Khripun AI, Shurygin SN, Mironkov AB, Izvekov AA, Guseva TV, Pryamikov AD. Microcirculation in the small and large intestine with thrombosis and thromboembolism of the mesenteric arteries. Surgery. Journal them. N.I. Pirogov. 2011;9:27-32. [In Russian]

Download Article
Received August 8, 2020.
Accepted August 26, 2020.
©2020 International Medical Research and Development Corporation.