Stress-Related Effects of Low-Intensity Laser Irradiation

Anna V. Deryugina, Marina N. Ivashchenko, Pavel S. Ignatyev, Tatyana I. Soloveva, Evgenia V. Arkhipova, Michael S. Lodyanoy, Vladimir А. Petrov, Аleksandr G. Samodelkin

International Journal of Biomedicine. 2019;9(2):163-167.
DOI: 10.21103/Article9(2)_OA17
Originally published June 15, 2019  


The purpose of this study was to investigate the effect of low-level laser (light) therapy (LLLT) on the electrokinetic properties of red blood cells (RBCs), taking into account the activity of stress-realizing systems of the body. The RBC electrophoretic mobility (RBCEM) was used as an index of stress reaction. The experiment included two series: in vivo and in vitro. Analyzing the LLLT effect on RBCEM, we can assume that the body's response to LLLT is associated with a short-term activation of the sympathoadrenal system and the subsequent longer reaction of the hypothalamic-pituitary-adrenal axis. Through activation of the hypothalamic-pituitary-adrenal axis, LLLT can indirectly cause the development of adaptation processes in the body.

low-level laser (light) therapy • stress • red blood cells • electrophoretic mobility of red blood cells
  1. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome C oxidase. J Biol Chem. 2005;280(6):4761-71.
  2. Liang HL, Whelan HT, Eells JT, Wong-Riley MT. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience. 2008;153(4):963-74. doi: 10.1016/j.neuroscience.2008.03.042.
  3. Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH, Ho ML, et al. Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One. 2014;9(8):e103348. doi: 10.1371/journal.pone.0103348. eCollection 2014.
  4. Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, et al. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B. 2007;89(1):50-5.
  5. Draper WE, Schubert TA, Clemmons RM, Milse SA. Low-level laser therapy reduces time to ambulation in dogs after hemilaminectomy: a preliminary study. J Small Anim Pract. 2012;53(8):465–9.
  6. Gigo-Benato D, Geuna S, de Castro Rodrigues A, Tos P, Fornaro M, Boux E, et al. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci. 2004;19(1):57–65.
  7. Casalechi HL, Leal-Junior EC, Xavier M, Silva JA Jr, de Carvalho Pde T, Aimbire F, Albertini R. Low-level laser therapy in experimental model of collagenaseinduced tendinitis in rats: effects in acute and chronic inflammatory phases. Lasers Med. Sci. 2013;28(3):989-95.
  8.  Gigo-Benato D, Russo TL, Tanaka EH, Assis L, Salvini TF, Parizotto NA. Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med. 2010;42:673–82.
  9. Chow RT, Johnson M, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374(9705):1897–908.
  10. Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, et al. Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2005;19:CD002049.
  11. Tumilty S, Munn J, McDonough S, Hurley DA, Basford JR, Baxter GD. Low level laser treatment of tendinopathy: a systematic review with meta-analysis. Photomed Laser Surg. 2010;28(1):3–16.
  12. Marcos RL, Arnold G, Magnenet V, Rahouadj R, Magdalou J, Lopes-Martins RÁ. Biomechanical and biochemical protective effect of low-level laser therapy for Achilles tendinitis. J  Mech Behav Biomed Mater. 2014;29:272–85.
  13. Kheshie AR, Alayat MS, Ali MM. High-intensity versus low-level laser therapy in the treatment of patient with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci. 2014;29(4):1371–6.
  14. Saber K, Chiniforush N, Shahabi S. The effect of low level laser therapy on pain reduction after third molar surgery. Minerva Stomatol. 2012;61(7–8): 319–22. 
  15. Alves AC, Vieira R, Leal-Junior E, dos Santos S, Ligeiro AP, Albertini R, et al. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther. 2013;15(5):116.
  16. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-33. doi: 10.1007/s10439-011-0454-7.
  17. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280(6):4761–71.
  18. Karu TI, Pyatibrat LV, Afanasyeva NI. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med. 2005;36(4):307-14.
  19. Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L. In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med.  2009; 41(3):227-31.
  20. Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 1984;175(1):95-9.
  21.  Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6(7):e22453. doi: 10.1371/journal.pone.0022453.
  22. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, et al. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem. 2003;278(42):40917-22.
  23. Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, Calzà L. Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. BMC Complement Altern Med. 2009;9:8. doi: 10.1186/1472-6882-9-8.
  24. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics. 2013;6(10):829-38. doi: 10.1002/jbio.201200157.
  25. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med. Sci. 2012;27:237-49.
  26. Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I. Effects of visible and near infrared lasers on cell cultures. J Photochem Photobiol B. 1992;12(3):305–10. 
  27. Frigo L, Fávero GM, Lima HJ, Maria DA, Bjordal JM, Joensen J, et al. Low-level laser irradiation (InGaAlP-660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner. Photomed Laser Surg. 2010;28(Suppl 1):S151–6.
  28.  Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci. 2013;28(2):367–74.
  29. Szymanska J, Goralczyk K, Klawe JJ, Lukowicz M, Michalska M, Goralczyk B, et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J Physiol Pharmacol. 2013;64(3):387–91. 
  30.  Agaiby AD, Ghali LR, Wilson R, Dyson M. Laser modulation of angiogenic factor production by T-lymphocytes. Lasers Surg Med. 2000;26(4):357–63. 
  31.  Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tözüm TF. Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg. 2012;30(3):149–54.
  32. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358–83. 
  33. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response. 2011;9(4):602–18. 
  34. Rochkind S1, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG. Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med. 1989;9(2):174-82.
  35. Coelho RC, Zerbinati LP, de Oliveira MG, Weber JB. Systemic effects of LLLT on bone repair around PLLA-PGA screws in the rabbit tibia. Lasers Med Sci. 2014;29(2):703-8. doi: 10.1007/s10103-013-1384-4.
  36. Schindl A, Heinze G, Schindl M, Pernerstorfer-Schön H, Schindl L. Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res. 2002;64(2):240-6.
  37. Walter H, Krob EJ. Fixation with even small guantities of glutaraldehyde effects red bloods cell surface properties in a cell. Biosci Rep.1989;9(6):727-35.
  38. Deryugina AV, Shumilova AV, Filippenko ES, Galkina YV, Simutis IS, Boyarinov GA. Functional and biochemical parameters of erythrocytes during mexicor treatment in posttraumatic period after experimental blood loss and combined traumatic brain injury. Bull Exp Biol Med. 2017;164(1):26-9. doi: 10.1007/s10517-017-3918-4.
  39. Deryugina AV, Ivashchenko MN, Ignatyev PS, Zolotova MV, Samodelkin АG. Electrophoretic Mobility of Red Blood Cells and Micronucleus Test in Exfoliated Buccal Cells as Stress Intensity Markers. International Journal of Biomedicine. 2018;8(4):347-50.
  40. Sunada, Rao BS, Raju TR. Restraint stress-induced alterations in the levels of biogenic amines, amino acids and AchE activity in the hippocampus. Neurochem Res. 2000;25(12):1547-52.
  41. Deryugina AV, Samodelkin AG, Ivashchenko MN, Ignatyev PS, Zolotova MV. The use of low intensity laser therapy for the reduction of technology stress of cows. AER-Advances in Engineering Research. 2018:151;820-24.

Download Article
Received February 18, 2019.
Accepted April 22, 2019.
©2019 International Medical Research and Development Corporation.