Characteristics of Humoral Regulation of Differentiation of Bone Marrow Monocyte Subpopulations in Patients with Ischemic Cardiomyopathy

Olga I. Urazova, Svetlana P. Chumakova, Maria V. Vins, Elena S. Maynagasheva, Vladimir M. Shipulin, Andrey S. Pryahin, Vadim S. Poletika, Tatyana E. Kononova, Yulia V. Kolobovnikova, Vyacheslav V. Novitskiy

International Journal of Biomedicine. 2019;9(2):91-96.
DOI: 10.21103/Article9(2)_OA1
Originally published June 15, 2019


Background: Monocytes and macrophages play an important role in atherogenesis and myocardial remodeling. Impaired differentiation of monocyte subpopulations may contribute to ischemic cardiomyopathy (ICMP). The aim of the present research was to study the features of the humoral cytokine-dependent regulation of differentiation of classical, intermediate, non-classical and transitional monocytes in bone marrow (BM) of CHD patients with or without ICMP.
Materials and Methods: Forty-five patients with coronary heart disease (CHD), with and without ICMP (19 and 26 male patients, respectively), were examined. Subpopulations of classical (CD14++CD16-), intermediate (CD14++CD16+), non-classical (CD14+CD16+), and transitional (CD14+CD16-) monocytes in bone marrow (BM) samples were quantified by flow cytometry. Concentrations of IL-1β, IL-13, TNF-α, IFN-γ, and M-CSF in BM supernatants and blood plasma were evaluated by ELISA.
Results:  Concentrations of all cytokines in the blood and IL-1β, IL-13, TNF-α, М-CSF in BM supernatants—as well as the capacity of М-CSF to activate, and IL-13 to inhibit, differentiation of classical monocytes from intermediate forms—were not dependent on the clinical form of CHD. Monocytopoiesis in ICMP was characterized by elevated BM concentration of IFN-γ, low М-CSF/IL-13 ratio, and a decreased percentage of classical and intermediate monocytes, accompanied by an increased number of transitional cells in BM, as compared to patients without ICMP.
Conclusion: Excess of IFN-γ and low M-CSF/IL-13 ratio in BM were associated with inhibition of differentiation of mature monocyte forms and development of ICMP.

monocytopoiesis • coronary heart disease • cytokines
  1. Gutor SS, Kazakov VA, Suhodolo IV, Shipulin VM, Babokin VYe, Ogurkova ON, et al. [Natriuretic peptide and his progenitors as predictors of progressive postoperative left ventricle remodeling in patients with ischemic cardiomyopathy]. Bulletin of Siberian Medicine. 2013; 12(6):25-30. [Article in Russian].
  2. Alzahrani Т, Tiu J, Panjrath G, Solomon A. The effect of angiotensin-converting enzyme inhibitors on clinical outcomes in patients with ischemic cardiomyopathy and midrange ejection fraction: a post hoc subgroup analysis from the PEACE trial. Ther Adv Cardiovasc Dis. 2018;12(12):351–359. doi: 10.1177/1753944718809266.
  3. Gavrish AS, Paukov VS. Ischemic cardiomyopathy. Moscow: “GEOTAR-Media”; 2015. [ in Russian].
  4. Kaski JC, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease. Circulation. 2018; 138(14):1463-1480. doi: 10.1161/CIRCULATIONAHA.118.031373.
  5. Kozhevnikov ML, Shipulin VM, Sukhodolo IV. [The virus-immune hypothesis for cardiac dilatation]. Ter Arkh. 2017;89(11):79-83. doi: 10.17116/terarkh2017891179-83. [Article in Russian].
  6. Xi R, Fan Q, Yan X, Zhang H, Xie H, Gu G, et al. Increased serum interleukin-34 levels are related to the presence and severity of cardiac dysfunction in patients with ischemic cardiomyopathy. Front Physiol. 2018;9:904. doi: 10.3389/fphys.2018.00904.
  7. Rojas J, Salazar J, Martínez MS, Palmar J, Bautista J, Chávez-Castillo M, et al. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Scientifica (Cairo). 2015;2015:851252. doi: 10.1155/2015/851252.
  8. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2018 Dec 21. doi: 10.1002/JLB.3RU1018-378RR.
  9. Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol. 2014; 289(1-2):135-9. doi: 10.1016/j.cellimm.2014.03.019.
  10. Ziegler-Heitbrock L, Hofer TPJ. Toward a refined definition of monocyte subsets. Front Immunol. 2013;(4):23. doi:10.3389/fimmu.2013.00023.
  11. Fadini GP, Simoni F, Cappellari R, Previato L, Avogaro A. Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis. 2014; 237(2):805-808. doi: 10.1016/j.atherosclerosis.2014.10.106.
  12. Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol. 2016;93:149–155. doi: 10.1016/j.yjmcc.2015.11.015.
  13. Shahid F, Lip GYH, Shantsila E. Role of monocytes in heart failure and atrial fibrillation. J Am Heart Assoc. 2018;7(3). pii: e007849. doi: 10.1161/JAHA.117.007849.
  14. Azarova DA, Chumakova SP, Urazova OI, Vins MV, Shipulin VM, Pryakhin AS, et al. [Interleukins 4 and 6 as factors of modulation of subpopulation composition of blood monocytes in patients with ischemic cardiomyopathy]. Kazan Medical Journal. 2018;99(6):900-905. [Article in Russian].
  15. Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210-8.
  16. Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35(5):1066-70. doi: 10.1161/ATVBAHA.114.304652.
  17. Urazova OI, Esimova IE, Kononova TE, Zakharova PV, Kolobovnikova YuV, Churina EG. [Molecular mechanisms of the immune response suppression in pulmonary tuberculosis]. Med Immunol. 2017;19(Suppl):206. [Article in Russian].
  18. Bansal SS, Ismahil MA, Goel M, Zhou G, Rokosh G, Hamid T, et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation. 2019;139(2):206-221. doi: 10.1161/CIRCULATIONAHA.118.036065.
  19. Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37(9):364-72. doi: 10.1016/j.tibs.2012.06.004.
  20. Lin N, Simon MC. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J Clin Invest. 2016; 126(10):3661-3671. doi: 10.1172/JCI84426.
  21. Hsiao HW, Hsu TS, Liu WH, Hsieh WC, Chou TF, Wu YJ, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353. doi: 10.1038/ncomms7353.
  22. Morales-Mantilla DE, King KY. The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease. Curr Stem Cell Rep. 2018;4(3):264-271. doi: 10.1007/s40778-018-0139-3.
  23. Jeannin P, Paolini L, Adam C, Delneste Y. The roles of CSFs on the functional polarization of tumor-associated macrophages. FEBS J. 2018;285(4):680-699. doi: 10.1111/febs.14343.


Download Article
Received February 15, 2019.
Accepted April 28, 2019.
©2019 International Medical Research and Development Corporation.