Indicators of Lipid Peroxidation Reactions and State of Structural Tissues of the Dentition System in Wistar Rats under Various Stress Regimes

Marina A. Darenskaya, Larisa R. Kolesnikova, Lyubov V. Rychkova, Lyudmila A. Grebenkina, Natalya V. Semenova, Sergey I. Kolesnikov, Lyubov I. Kolesnikova

 
International Journal of Biomedicine. 2020;10(2):142-147.
DOI: 10.21103/Article10(2)_OA11
Originally published June 15, 2020.

Abstract: 

The aim of this research was to investigate the content of lipid peroxidation (LPO) products and components of antioxidant defense (AOD), as well as to evaluate morphometric parameters of the dentition system tissues in Wistar rats when modeling acute and chronic modes of immobilization stress.
Methods and Results: The work was performed on young (2.5-3 months), sexually mature male rats of the Wistar line, weighing 200-220g. The design of the study consisted in evaluating biochemical and morphometric parameters at the stage before immobilization—intact animals (10 rats)— as well as in modeling various stress modes: acute stress (3 hours from the moment of 3-hour single immobilization) and chronic stress (1-hour immobilization with an interval of 72 hours between separate stress episodes on Days 1, 5, 9 and 13). Both modes included 20 rats. The intensity of lipid peroxidation-antioxidant defense processes was assessed using spectrophotometric and fluorometric methods. The microscopic and morphometric studies were performed in the light-optical microscope AxioScope A1 and included a detailed description of all changes in the tooth and periodontal tissues. We found that acute stress is accompanied by increased LPO reactions at the stage of primary and secondary products with simultaneous activation of antioxidant factors. In chronic stress exposure, there is an accumulation of thiobarbituric acid reactants, with a decrease in the level of non-enzymatic components—α-tocopherol, retinol, and oxidized glutathione. The changes in the state of the dentition system in Wistar rats was accompanied by an increase in the area of the microcirculatory bed of the periodontium and pulp and a natural reduction in the connective tissue area, with an increase in the thickness of vascular endothelium and an increased number of cellular elements that control metabolic processes, especially pronounced in acute stress. The change in the mode of stress exposure to chronic in animals of this line was characterized by generally similar changes with reduced reaction intensity.
Conclusion: The processes of LPO-AOD and the indicators of the dentition system in Wistar rats undergo changes depending on the mode of stress exposure.

Keywords: 
Wistar rats • lipid Peroxidation • Periodontium • pulp • acute stress • chronic stress
References: 
  1. Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25-36. doi:10.1016/j.psyneuen.2016.11.036. 
  2. Kolesnikova LI, Darenskaya MA, Kolesnikov SI. [Free radical oxidation: a pathophysiologist's view]. Bulletin of Siberian Medicine. 2017;16(4):16-29. doi: 10.20538/1682-0363-2017-4-16-29. [Article in Russian].
  3. Gaivoronskaya MG, Gaivoronsky IV. Functional and clinical anatomy of the dentition system: textbook for medical schools. Saint Petersburg: SpetsLit, 2016;128. [Textbook in Russian].
  4. Meerson FZ. [Protective effects of adaptation and some prospects for the development of adaptive medicine]. Advances in Physiological Sciences. 1991;22(2):52-87. [Article in Russian].
  5. Amraoui W, Adjabi N, Bououza F,  Boumendjel M, Taibi F, Boumendjel A, et al. Role of Selenium and Vitamin E, Natural Antioxidants, against Bisphenol A-Induced Oxidative Stress in Wistar Albinos Rats. Toxicol Res. 2018;34(3):231–239. doi:10.5487/TR.2018.34.3.231.
  6. Darenskaya MA, Kolesnikov SI, Rychkova LV, Grebenkina LA, Kolesnikova LI. Oxidative stress and antioxidant defense parameters in different diseases: ethnic aspects. Free Radical Biology&Medicine. 2018;120(S1):S60. doi: 10.1016/j.freeradbiomed.2018.04.199.
  7. Ershova OA, Bairova TA, Kolesnikov SI, Kalyuzhnaya OV, Darenskaya MA, Kolesnikova LI. Oxidative Stress and Catalase Gene. Bull Exp Biol Med. 2016;161(3):400-3. doi:10.1007/s10517-016-3424-0.
  8. Bairova TA, Kolesnikov SI, Kolesnikova LI, Pervushina OA, Darenskaya MA, Grebenkina LA. Lipid peroxidation and mitochondrial superoxide dismutase-2 gene in adolescents with essential hypertension. Bull Exp Biol Med. 2015;158(2):181-4. doi:10.1007/s10517-014-2717-4.
  9. Singh R, Srivastava AK, Gangwa NK, Singh U, Singh R. Ameliorative Effect of Vitamin E on Cypermethrin Induced Hepatotoxicity and Oxidative Stress in Male Wistar Rats. Journal of Animal Research. 2017;7(3):445-450. doi:10.5958/2277-940X.2017.00066.3.
  10. Kolesnikova LI, Rychkova LV, Kolesnikova LR, Darenskaya MA, Natyaganova LV, Grebenkina LA, et al. Coupling of Lipoperoxidation Reactions with Changes in Arterial Blood Pressure in Hypertensive ISIAH Rats under Conditions of Chronic Stress. Bull Exp Biol Med. 2018;164(6):712-715. doi: 10.1007/s10517-018-4064-3.
  11. Darenskaya MA, Rychkova LV, Kolesnikov SI, Gavrilova OA, Kravtsova OV, Grebenkina LA, et al. Oxidative stress parameters in adolescent boys with exogenous-constitutional obesity. Free Radical Biology & Medicine. 2017;112:129-130. doi: 10.1016/J.FREERADBIOMED.2017.10.195.
  12. Novozhilov AV, Tavrovskaya TV, Ivanov VA, Morozov VI. Hematological parameters and redox balance of rat blood in the dynamics of immobilization. Bull Exp Biol Med. 2013;155(4):447-50.
  13. Kolesnikova LI, Kolesnikov SI, Korytov LI, Suslikova MI, Darenskaya MA, Grebenkina LA, et al. Oxidative Stress as Mechanisms of Reduced Glucose Absorption under Conditions of Immobilization Stress. Bull Exp Biol Med. 2017;164(2):132-135. doi:10.1007/s10517-017-3941-5.
  14. Wutzke MLS, Leite MA, Nassar CA, Nassar PO, Brancalhão RMC, Bertolini GRF, et al. Immobilization and experimental periodontitis in tibial anterior muscle of wistar rats. Journal of Pre-Clinical and Clinical Research. 2019;13(1):1-4.
  15. Volchegorsky IA, Dolgushin II, Kolesnikov OL, Tseilikman VE. Experimental modeling and laboratory evaluation of body adaptive reactions. Chelyabinsk, 2000;167. [Textbook in Russian].
  16. Tseilikman VE., Tseilikman OB, Sinitsky AI, Lavin EA, Lapteva IA, Gornostaeva AB, et al. [Biochemical strategies of adaptation in conditions of chronic stress]. Bulletin of SUSU. Ser. Education, Health care, Physical culture. 2008;14(4):56-57. [Article in Russian].
  17. Volchegorsky IA, Nalimov AG, Yarovinsky BG. [Comparison of different approaches to determining the products of lipid peroxidation in heptan-isopropanol extracts of blood]. Voprosy meditsinskoi khimii. 1989:127-131. [Article in Russian].
  18. Gavrilov VB, Gavrilova AR, Mazhul LM. [Analysis of methods for determining the products of lipid peroxidation in blood serum by the test with thiobarbituric acid]. Voprosy meditsinskoi khimii.1987;1:118-122. [Article in Russian].
  19. Klebanov GI, Babenkova IV, Teselkin YuO, Komarov OS, Vladimirov YuA. [Evaluation of the antioxidant activity of blood plasma using yolk lipoproteins]. Laboratornaya rabota. 1988;5:59-62. [Article in Russian].
  20. Chernyauskene RCh, Varshkevichene ZZ, Grybauskas PS. [Simultaneous determination of vitamin E and A concentrations in blood serum]. Laboratornaya rabota. 1984;6:362-365. [Article in Russian].
  21. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-5.
  22. Hisin PJ, Hilf R. Fluorоmetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74:214-26.
  23. Manual on Experimental (Preclinical) Study of New Pharmacological Substances. Ed. R. U. Khabriev. Moscow, 2005. [in Russian].
  24. El-Dein B, Mohamed I, Mohamed FA, Ahmed MA, Soliman NBED, Lasheen NN, et al. Sex Differences in Metabolic Responses to Chronic Immobilization Stress in Rats. Bulletin of Egyptian Society for Physiological Sciences. 2020;40(1):148-165. doi:10.21608/besps.2019.18674.1036.
  25. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-3. doi: 10.1016/j.redox.2015.01.002.
  26. Solin AV, Lyashev AY, Lyashev YD. Effects of Opioid Peptides on Changes in Lipid Metabolism in Rats Subjected to Swimming Stress. Bull Exp Biol Med. 2017;16293):313–315. doi:10.1007/s10517-017-3603-7.
  27. Tseilikman VE, Kozochkin DA, Sinitsky AI, Tseilikman OB, Lapshin MS, Kuzina OV, et al. Effect of Repeated 1-h Episodes of Immobilization Stress on Activity of Glucocorticoid Metabolism Enzymes in the Liver. Bull Exp Biol Med. 2015;160(5):614-6. doi: 10.1007/s10517-016-3230-8.
  28. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Dolgikh MI, Astakhova TA, Semenova NV. Gender differences in parameters of lipid metabolism and of level of antioxidants in groups of juveniles-the Even and the Europeans. Journal of Evolutionary Biochemistry and Physiology. 2014;50(1):34-41. doi: 10.1134/S0022093014010058.
  29. Kolesnikova LI, Darenskaya MA, Semenova NV, Grebenkina LA, Suturina LV, Dolgikh MI, et.al. Lipid peroxidation and antioxidant protection in girls with type 1 diabetes mellitus during reproductive system development. Medicina (Kaunas). 2015;51(2):107-11. doi: 10.1016/j.medici.2015.01.009.
  30. Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of alpha-tocopherol in membranes. Mol Nutr Food Res. 2010;54(5):641-51. doi: 10.1002/mnfr.200900439.
  31. Pisoschi AM, Pop PA. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97(5):55-74. doi: 10.1016/j.ejmech.2015.04.040.
  32. Sarapultsev AP, Sarapultseva MV, Medvedeva SYu, Mukhlinina EA, Danilova IG. [Assessment of stress response and mucosal damage in violation of the anesthetics administering technique]. Parodontologiia. 2013;18(2):29-33.
  33. Antonova IN. Changes in the Masticatory Muscles, Periodontal Tissues and the Pharyngeal Ring in Wistar Rats in Chronic Psychophysical Stress. Neuroscience and Behavioral Physiology. 2008;38(9):891-895. doi: 10.1007/s11055-008-9068-4.

Download Article
Received April 1, 2020.
Accepted April 14, 2020.
©2020 International Medical Research and Development Corporation.