Immune and Metabolic Response to Covid-19 Infection: Review for Molecular Pathways

Andrew K. Martusevich, Konstantin A. Karuzin, Olga B. Zhdanova

International Journal of Biomedicine. 2020;10(3):177-181.
DOI: 10.21103/Article10(3)_RA1
Originally published September 10, 2020


The purpose of this review is a systematic analysis of data from clinical observations, international experience and reviews related to the pathogenetic aspects of the impact of a new coronavirus infection on the immune system. Information was searched in MEDLINE, PubMed, and RSCI databases. Some data for SARS-CoV-2 virus as etiological agent that provokes the development of COVID-19 are presented. Special attention was paid to immunity shifts, which were produced in patients under COVID-19 infection. The prevailing role of the "cytokine storm" in the development of severe forms of the disease is revealed in detail. Demonstrated and integrated into a single scheme of adjustment, innate and adaptive immunity is occurring with the new coronavirus infection. This information is supplemented by the characteristics of the metabolic response accompanying this pathology and by changes in the erythrocyte state under COVID-19 infection. Based on these pathogenetic mechanisms, potential variants of targeted correction of the disease are proposed and justified.

COVID-19 • pathogenesis • immunity • cytokine storm
  1. Martusevich AK, Peretyagin SP. [New coronavirus infection (COVID-19) as a global challenge to humanity: some aspects of epidemiology, pathogenesis and diagnostics]. Biorad Antioxid. 2020;7(1):42-71. [Article in Russian].
  2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. doi:10.1016/S0140-6736(20)30251-8
  3. McIntosh K. Coronavirus disease 2019 (COVID-19): Epidemiology, virology, clinical features, diagnosis, and prevention. Available from:
  4. Perlman S. Another Decade, Another Coronavirus. N Engl J Med. 2020;382(8):760-762. doi:10.1056/NEJMe2001126
  5. World Health Organization. Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. Available from:
  6. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T et al. Qin Ning Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J Clin Invest. 2020;130(5):2620-2629. doi: 10.1172/JCI137244.
  7. Frater JL, Zini G, d'Onofrio G, Rogers HJ. COVID-19 and the Clinical Hematology Laboratory. Int J Lab Hematol. 2020;42 Suppl 1:11-18. doi:10.1111/ijlh.13229
  8. Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10):e137799. Published 2020 May 21. doi:10.1172/jci.insight.137799
  9. Gorenkov DV, Khantimirova LM, Shevtsov VA, Rukavishnikov AV, Merkulov VA, Olefir YuV. [An outbreak of a new infectious disease COVID-19: β-coronaviruses as a threat to global health]. BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(1):6–20. [Article in Russian].
  10. Lvov DK, Alkhovsky SV, Kolobukhina LV, Burtseva EI. [Etiology of Epidemic Outbreaks COVID-19 on Wuhan, Hubei Province, Chinese People Republic Associated With 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): Lessons of SARS-CoV Outbreak]. Vopr Virusol. 2020;65(1):6-15. doi:10.36233/0507-4088-2020-65-1-6-15. [Article in Russian].
  11. Nikiforov VV, Suranova TG, Chernobrovkina TYa et al. [New coronavirus infection (covid-19): clinical and epidemiological aspects]. Archive of Internal Medicine. 2020;10(2):87-93. [Article in Russian].
  12. Abaturov AE, Agafonova EA, Krivusha EL, Nikulina AA. [Pathogenesis of COVID-19]. Zdorov’e Rebenka. 2020;15(2):133-144. [Article in Russiam].
  13. Zhou P, Yang XL, Wang XG, Hu  B, Zhang L, Zhang W,et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7
  14. Gorbalenya AE, Baker SC, Baric RS. de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. bioRxiv 2020.
  15. Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB. Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion. J Virol. 2016;90(19):8924-8933. doi: 10.1128/JVI.01429-16.
  16. Zhu N, Zhang D, Wang W, Li X, Yang B,  Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/NEJMoa2001017
  17. Tang X, Wu C, Li X, Song Yu, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. National Science Review. 2020. National Science Review. 2020;7(6):1012–1023. doi: 10.1093/nsr/nwaa036
  18. Chaw S-M, Tai J-H, Chen S-L, Hsieh C-H, Chang S-Y, Yeh S-H, et al. The origin and underlying driving forces of the SARS-CoV-2 outbreak. J Biomed Sci 2020;27:73.
  19. Li G, Fa Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus Infections and Immune Responses. J Med Virol. 2020;92(4):424-432. doi: 10.1002/jmv.25685.
  20. Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854. doi:10.1016/S0140-6736(20)31208-3
  21. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. doi:10.1016/j.cell.2006.02.015
  22. Kell AM, Gale M Jr. RIG-I in RNA virus recognition. Virology. 2015;479-480:110-121. doi:10.1016/j.virol.2015.02.017
  23. Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG‐I‐like receptors. Immunol Rev. 2009;227(1):54-65. doi:10.1111/j.1600-065X.2008.00727.x
  24. Davis BK, Roberts RA, Huang MTб Willingham SB, Conti BJ, Brickey WJ, et al. Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol. 2011;186(3):1333-1337. doi:10.4049/jimmunol.1003111
  25. Hornung V, Ablasser A, Charrel‐Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514-518. doi:10.1038/nature07725
  26. Inohara C, McDonald C, Nunez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 2005;74:355-383. doi:10.1146/annurev.biochem.74.082803.133347
  27. Zhu X, Wang Y, Zhang H, Liu X, Chen T, Yang R, et al.  Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection. PLoS One. 2011;6(8):e23730. doi:10.1371/journal.pone.0023730
  28. Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol. 2020;38(1):10-18. doi:10.12932/AP-200220-0773
  29. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J Infect. 2020;80(6):607-613. doi: 10.1016/j.jinf.2020.03.037.
  30. Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev Rep. 2020;16(3):434-440. doi:10.1007/s12015-020-09976-7
  31. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131-1134. doi:10.1515/cclm-2020-0198
  32. Lu G, Wang J. Dynamic changes in routine blood parameters of a severe COVID-19 case [published online ahead of print, 2020 May 13]. Clin Chim Acta. 2020;508:98-102. doi:10.1016/j.cca.2020.04.034
  33. Luo Y, Yuan X, Xue Y, Mao L., Lin Q, Tang G et al. Using a diagnostic model based on routine laboratory tests to distinguish patients infected with SARS-CoV-2 from those infected with influenza virus. Int J Infect Dis. 2020;95:436-440. doi:10.1016/j.ijid.2020.04.078
  34. Lapić I, Rogić D, Plebani M. Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): a pooled analysis. Clin Chem Lab Med. 2020;58(7):1146-1148. doi:10.1515/cclm-2020-0620
  35. Wang Z, Du Z, Zhu F. Glycosylated Hemoglobin Is Associated With Systemic Inflammation, Hypercoagulability, and Prognosis of COVID-19 Patients. Diabetes Res Clin Pract. 2020;164:108214. doi: 10.1016/j.diabres.2020.108214.
  36. Lehene M, Fischer-Fodor E, Scurtu F, Hădade ND, Gal E, Mot AC, et al. Excess Ascorbate is a Chemical Stress Agent against Proteins and Cells. Pharmaceuticals (Basel). 2020;13(6):107. Published 2020 May 27. doi:10.3390/ph13060107

Download Article
Received June 18, 2020.
Accepted July 13, 2020.
©2020 International Medical Research and Development Corporation.