Effect of an Increase in Heart Rate on the Pumping Function of the Heart Ventricles in Cold-Blooded Animals under Low Ambient Temperature Conditions

Natalya A. Kibler, Vladimir P. Nuzhny, Dmitry N. Shmakov

 
International Journal of Biomedicine. 2020;10(3):262-265.
DOI: 10.21103/Article10(3)_OA12
Originally published September 10, 2020

Abstract: 

This study investigated the effect of heart rate (HR) on the pumping function of the heart ventricle (HV) in rainbow trout Oncorhynchus mykiss acclimated to a temperature of 5–7ºC, and in adult frogs Rana temporaria at an ambient temperature of 10–12ºC. The dynamics of intracavitary ventricular pressure was recorded by transmural catheterization. HR was changed by atrial electrocardiostimulation. The increase in HR in rainbow trout resulted in a decrease in the maximal systolic ventricular pressure (MSVP), an increase of end-diastolic ventricular pressure (EDVP), and a reduction in the maximum rates of the rising and falling pressures. In the frog, MSVP and isovolumic parameters (dP/dtmax and dP/dtmin) also decreased as HR increased from 24 bpm to 42 bpm. The preload of the frog's HV did not change significantly, compared to the sinoatrial rhythm (SR). The maximum increase in the frequency of atrial stimulation up to 60bpm in fish and up to 42 bpm in frogs resulted in a significant decrease in the myocardial contractility and deterioration of the pumping function of HV under low ambient temperature conditions.

Keywords: 
pumping function • heart rate • heart ventricle • temperature • rainbow trout • frog
References: 

1. Farrell AP, Eliason E, Sandblom E, Clark TD. Fish cardiorespiratory physiology in an era of climate change. Canad J Zool. 2009; 87(10):835-851.   
2. Kibler NA, Nuzhny VP, Achmetzhynova SV, Shmakov DN. Effects of Heart Rate on the Pump Function and Electrophysiological Characteristics of the Heart in the Frog Rana temporaria. International Journal of Biomedicine. 2017;7(1):46-50. doi: 10.21103/Article7(1)OA5.
3. Davies F, Francis ET. The conducting system of the vertebrate heart. Biol Rev Camb Phylos Soc. 1946;21(4):173-188. doi:10.1111/j.1469-185x.1946.tb00323.x
4. Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes and evolution. Physiol Rev. 2003;83(4):1223-1267. doi:10.1152/physrev.00006.2003
5. Sedmera D, Reckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, et al.  Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts [published correction appears in Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H919]. Am J Physiol Heart Circ Physiol. 2003;284(4):H1152-H1160. doi:10.1152/ajpheart.00870.2002
6. Jensen J, Wang T, Christoffels VM, Moorman AFM. Evolution and development of the building plan of the vertebrate heart.  Biochimica et Biophysica Acta. 2013; 1833(4):783-94. doi: 10.1016/j.bbamcr.2012.10.004.
7. Kibler NA, Nuzhny VP, Prosheva VI. Electrical and Contractile Properties of the Heart Ventricle in Response to Ambient Temperature Changes in Frog Rana temporaria. International Journal of Biomedicine. 2017; 7(3):180-184. doi: 10.21103/Article7(3)OA4.
8. Sandblom E, Farrell AP, Altimiras J, Axelsson M, Claireaux G. Cardiac preload and venous return in swimming sea bass (Dicentrarchus labrax L.).  J Exp Biol. 2005;208(Pt 10):1927-1935. doi:10.1242/jeb.01606
9. Coyne MD, Kim KC, Cameron JS, Gwathmey JK. Effects of temperature and calcium availabilityon ventricular myocardium from rainbow trout. Am J Physiol Regulatory Integrative Comp Physiol. 2000;278(6):R1535-R1544. doi:10.1152/ajpregu.2000.278.6.R1535
10. Kopp R, Schwerte T, Pelster B. Cardiac performance in the Zebrafish Breakdance Mutant. J Exp Biol. 2005; 208:2123-2134. doi: 10.1242/jeb.01620.
11. Haverinen J, Vornanen M. Temperature acclimation modifies Na+ current in fish cardiac myocytes. J Exp Biol. 2004;207(Pt 16):2823-2833. doi:10.1242/jeb.01103
12. Vornanen M, Shiels HA, Farrell AP. Plasticity of excitation–contraction coupling in fish cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol. 2002;132(4):827-846. doi:10.1016/s1095-6433(02)00051-x
13. Kibler NA, Nuzhny VP, Kharin SN, Shmakov DN. Does Atrial Electrical Stimulation to the Sequence of Depolarization of the Ventricles of Rainbow Trout Oncorhynchus mykiss? J Evol Biochem Physiol. 2020; 56(1):42-47. DOI: 10.31857/S0044452920010052.
14. Glukhov AV, Egorov YuV, Rozenshtrauh LV. [Electrophysiological mechanisms of stability of the heart rhythm of hibernating mammals during hypothermia]. Usp Fiziol Nauk. 2014; 45(1):3-26. [Article in Russian].
15. Seebacher F, Franklin CE. Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. J Exp Biol. 2011;214(Pt 9):1437-1444. doi:10.1242/jeb.053124
16. Shemarova IV, Kuznetsov SV, Demina IN, Nesterov VP. [T-channels and Na+, Ca2+-exchangers as components of the Ca2+-system of the myocardial activity regulation of the frog Rana temporaria]. J Evol Biochem Physiol. 2009; 45(3):319-328. [Article in Russian].

Download Article
Received June 1, 2020.
Accepted June 26, 2020.
©2020 International Medical Research and Development Corporation.