Efficacy of Interferon Gamma in the Prevention of SARS-CoV-2 Infection (COVID-19): Results of a Prospective Controlled Trial

Alexander L. Myasnikov, Svetlana A. Berns, Konstantin V. Zverev, Olga A. Lartseva, Pavel A. Talyzin

 
International Journal of Biomedicine. 2020;10(3):182-188.
DOI: 10.21103/Article10(3)_OA1
Originally published September 10, 2020

Abstract: 

Background: To date, there is no evidence supporting the effectiveness of the use of any drugs for the prevention of COVID-19. However, we have a number of promising drugs at our disposal, which may be potential candidates in COVID-19 prevention. The main aim of this study was to assess the prevalence of COVID-19 among healthy volunteers using nasal INF-γ as a preventive measure.

Methods and Results: In this observational prospective study, we used INF-γ in a dosage form for intranasal administration to identify a prophylactic effect in volunteers at high risk of getting COVID-19 - medical workers and personnel working in the “red zone.” Prophylactic efficacy was evaluated by the incidence of COVID-19 among volunteers when using the study drug (the study group) in comparison with the control group. The mean score on the WHO clinical improvement scale in the two groups was also analyzed. For each participant in the study, initial demographic and epidemiological data were collected: age, gender, the average frequency of ARVI (per year), as well as information on professional activities (work schedule and the number of patients with whom the participant contacts every day). Findings showed that most participants previously had about 45%-48% cases of ARD per year. As a result, we saw good tolerance to COVID-19: 98% and 86% of subjects of both groups did not get sick during the period of observation, although the first group showed statistically significant (P=0.0019) better results in disease prevalence. In addition, the comparative analysis demonstrated 0.02 and 0.14 scores of the WHO clinical improvement scale in the study group and control group, respectively (P=0.0255). None of the subjects had adverse events.

Conclusion: This study concluded that there is a potential positive preventive effect of nasal INF-γ against ARVI including COVID-19 in healthy volunteers. INF-γ use was safe and well tolerated.

Keywords: 
interferon gamma • SARS-CoV-2 • COVID-19 • intranasal administration • prevention
References: 
  1. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Munnink BBO, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012-1015. doi: 10.1126/science.abb7314.
  2. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-434. doi:10.1016/S1473-3099(20)30086-4
  3. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349. doi:10.1056/NEJM200005043421806
  4. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome [published correction appears in Lancet Respir Med. 2020 Feb 25]. Lancet Respir Med. 2020;8(4):420-422. doi:10.1016/S2213-2600(20)30076-X
  5. Tian S, Hu W, Niu L, Liu H, Xu H, and Xiao SY. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020;15(5):700-704. doi:10.1016/j.jtho.2020.02.010
  6. Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv. 2020. doi: 10.1101/2020.03.13.990226.
  7. Munster VJ, Feldmann F, Williamson BN, Van Doremalen N, Pérez-Pérez L, Schulz J, et al. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2. Preprint. bioRxiv. 2020;2020.03.21.001628. Published 2020 Mar 21. doi:10.1101/2020.03.21.001628
  8. Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics [published online ahead of print, 2020 Jul 3]. Lancet Infect Dis. 2020;S1473-3099(20)30484-9. doi:10.1016/S1473-3099(20)30484-9
  9. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177-1179. doi:10.1056/NEJMc2001737
  10. Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-1772. doi:10.1016/s0140-6736(03)13412-5
  11. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586-020-2196-x
  12. Hui KPY, Cheung MC, Perera RAPM, Ng  KC, Bui CHT, Ho JCW, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med. 2020;8(7):687-695. doi:10.1016/S2213-2600(20)30193-4
  13. Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K, et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility - King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69(13):377-381. Published 2020 Apr 3. doi:10.15585/mmwr.mm6913e1
  14. CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-346. Published 2020 Mar 27. doi:10.15585/mmwr.mm6912e2
  15. Nikiforov VV, Suranova TG, Mironov AJu and Zabozlaev FG. [New coronavirus infection (COVID-19): etiology, epidemiology, clinic, diagnosis, treatment and prevention]. Moscow; 2020. [in Russian].
  16. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69-71. doi:10.5582/bst.2020.01020
  17. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479-490. doi:10.1002/jmv.25707
  18. Costa-Pereira AP, Williams TM, Strobl B, Watling D, Briscoe J, Kerr IM. The antiviral response to gamma interferon. J Virol. 2002;76(18):9060-9068. doi:10.1128/jvi.76.18.9060-9068.2002
  19. Lee AJ, Ashkar AA. The Dual Nature of Type I and Type II Interferons. Front Immunol. 2018;9:2061. Published 2018 Sep 11. doi:10.3389/fimmu.2018.02061
  20. Shan L, Fu F, Xue M, Zhu X, Li L, Feng L, et al.  Interferon gamma inhibits transmissible gastroenteritis virus infection mediated by an IRF1 signaling pathway. Arch Virol. 2019;164(11):2659-2669. doi:10.1007/s00705-019-04362-2
  21. Rhein BA, Powers LS, Rogers K, Anantpadma M, Singh BK, Sakurai Y, et al.  Interferon-γ Inhibits Ebola Virus Infection. PLoS Pathog. 2015;11(11):e1005263. Published 2015 Nov 12. doi:10.1371/journal.ppat.1005263
  22. Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990;62(2):379-390. doi:10.1016/0092-8674(90)90374-n
  23. Lee AJ, Chen B, Chew MV, Barra NG, Shenouda MM, Nham T, et al. Inflammatory monocytes require type I interferon receptor signaling to activate NK cells via IL-18 during a mucosal viral infection. J Exp Med. 2017;214(4):1153-1167. doi:10.1084/jem.20160880
  24. Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993;261(5127):1445-1448. doi:10.1126/science.7690156
  25.  Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al. ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell. 2017;171(4):795-808.e12. doi:10.1016/j.cell.2017.09.052
  26.  Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503-510. doi:10.1038/ni1582
  27. Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017;8(6):e2836. Published 2017 Jun 1. doi:10.1038/cddis.2017.67
  28. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, et al. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity. 2012;36(6):1047-1059. doi:10.1016/j.immuni.2012.03.026
  29. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 2004;5(12):1260-1265. doi:10.1038/ni1138
  30.  Kang K, Park SH, Chen J, Qiao Y, Giannopoulou E, Berg K, et al. Interferon-gamma represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity. 2017;47(2):235-250.e4. doi:10.1016/j.immuni.2017.07.017
  31. Cooksley WG. Treatment of hepatitis B with interferon and combination therapy. Clin Liver Dis. 2004;8(2):353-370. doi:10.1016/j.cld.2004.02.004
  32. Shepherd J, Waugh N, Hewitson P. Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review. Health Technol Assess. 2000;4(33):1-67.
  33. Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts. 2018;9(1):64-79. Published 2018 May 30. doi:10.1515/bmc-2018-0007
  34. Don ЕS, Emelyanova AG, Yakovleva NN, Petrova NV, Nikiforova MV, Gorbunov EA, et al. Dose-dependent antiviral activity of released-active form of antibodies to interferon-gamma against influenza A/California/07/09(H1N1) in murine model. J Med Virol. 2017;89(5):759-766. doi: 10.1002/jmv.24717.
  35. Berri F, Haffar G, Lê VB, Sadewasser A, Paki K, Lina B, et al. Annexin V incorporated into influenza virus particles inhibits gamma interferon signaling and promotes viral replication. J Virol. 2014;88(19):11215-28. doi: 10.1128/JVI.01405-14.
  36. Verhoeven D, Perry S, Pryharski K. Control of influenza infection is impaired by diminished interferon-γ secretion by CD4 T cells in the lungs of toddler mice. J Leukoc Biol. 2016;100(1):203-12. doi: 10.1189/jlb.4A1014-497RR.
  37. Theeten H, Mathei C, Peeters K, Ogunjimi B, Goossens H, Ieven M, Van Damme P, Cools N. Cellular Interferon Gamma and Granzyme B Responses to Cytomegalovirus-pp65 and Influenza N1 Are Positively Associated in Elderly. Viral Immunol. 2016;29(3):169-75. doi: 10.1089/vim.2015.0071.
  38. Rhein BA, Powers LS, Rogers K, Anantpadma M, Singh BK, Sakurai Y, et al.  Interferon-γ Inhibits Ebola Virus Infection. PLoS Pathog. 2015;11(11):e1005263. Published 2015 Nov 12. doi:10.1371/journal.ppat.1005263
  39. Sologub TV, Golobokov GS, Cvetkov VV and Tokin II. [Interferon-gamma in the treatment of influenza and other respiratory viral infections]. Medicinskij Sovet. 2015;7. [Article in Russian].
  40. Nikiforov VV, Sologub TV, Tokin II, Cvetkov VV, Erofeeva MK and Zarubaev VV. [Possibility of using interferon-y for influenza infection]. Jepidemiologija i Infekcionnye Bolezni. 2015;20(3). [Article in Russian].
  41. Midikari AS, Agafonov VN, Suzdal'cev AA and Cvetkov VV. [Efficiency and expediency of using recombinant interferon-gamma in the complex therapy of patients with influenza A (H1N1) PDM09]. Jepidemiologija i Infekcionnye Bolezni. 2017;22(2). [Article in Russian].
  42. Tokin II, Nikiforov VV, Shabalkin PI, Pimanchev PV, Isakova JA and Tsvetkov VV. Randomized Controlled Parallel-Design Clinical Study of the Efficacy and Safety of Intranasal Interferon gamma in Treatment of Influenza-Like Infections. International Journal of Biomedicine. 2018;8(4):327–332. doi: 10.21103/article8(4)_oa12.
  43. Smetanina CV, Nikiforov VV, Kolobuhina LV. [New coronavirus infection (COVID-19): etiology, epidemiology, clinic, diagnosis, treatment and prevention]. Moscow: Moscow City Government, Moscow City Health Department; 2020. [in Russian].
  44. Elmore SA. Enhanced histopathology of mucosa-associated lymphoid tissue. Toxicol Pathol. 2006;34(5):687-696. doi:10.1080/01926230600939989
  45. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7
  46. Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent Sci. 2020;6(5):591-605. doi:10.1021/acscentsci.0c00501
  47. Kucirka LM, Lauer SA, Laeyendecker O, Boon D and Lessler J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann Intern Med. 2020;173(4):262-267. doi:10.7326/M20-1495
  48. Sun Y, Koh V, Marimuthu K, Ng OT, Young B, Vasoo S, et al. Epidemiological and Clinical Predictors of COVID-19. Clin Infect Dis. 2020;71(15):786-792. doi:10.1093/cid/ciaa322
  49. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30]. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
  50. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032
  51. Tagliabue M, Pietrobon G, Ugolini S, Chu F, Ansarin M. Nasopharyngeal swabs during SARS-CoV-2 pandemic: a role for the otolaryngologist. Eur Arch Otorhinolaryngol. 2020;277(7):2155-2157. doi:10.1007/s00405-020-06027-2
  52. Marty FM, Chen K, Verrill KA. How to Obtain a Nasopharyngeal Swab Specimen. N Engl J Med. 2020;382(22):e76. doi:10.1056/NEJMvcm2010260
  53. COMMUNICATION FROM THE COMMISSION. Guidelines on COVID-19 in vitro diagnostic tests and their performance. Brussels, 15.4.2020; C(2020) 2391 final. Available at https://ec.europa.eu/info/sites/info/files/testing_kits_communication.pdf
  54. Pan Y, Long L, Zhang D, Yuan T, Cui S, Yang P, et al. Potential False-Negative Nucleic Acid Testing Results for Severe Acute Respiratory Syndrome Coronavirus 2 from Thermal Inactivation of Samples with Low Viral Loads. Clin Chem. 2020;66(6):794-801. doi:10.1093/clinchem/hvaa091
  55. Woo PC, Lau SK, Wong BH, Chan KH, Chu CM, Tsoi HW, et al.  Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol. 2004;11(4):665-668. doi:10.1128/CDLI.11.4.665-668.2004
  56. Xu W, Li J, He X, Zhang C, Mei S, Li C, et al.  The diagnostic value of joint detection of serum IgM and IgG antibodies to 2019-nCoV in 2019-nCoV infection. Chinese Journal of Laboratory Medicine43(3). https://doi.org/10.3760/cma.j.issn.1009-9158.2020.03.007

Download Article
Received July 28, 2020.
Accepted September 5, 2020.
©2020 International Medical Research and Development Corporation.