Digital Holographic Imaging the Future of Radiology: A Review Article

Mustafa Z. Mahmoud, Hatem A. Alonazi, Moram A. Fagiry, Batil Alonazi, Salem Saeed Alghamdi, Rowa Aljondi, Mahasin G. Hassan

 
International Journal of Biomedicine. 2020;10(3):206-210.
DOI: 10.21103/Article10(3)_RA4
Originally published September 10, 2020

Abstract: 

The potential that digital holographic imaging (DHI) holds in the future of radiology in 3D will undoubtedly lead to revolutionizing the guidance of minimally invasive surgical and percutaneous procedures, which are currently being performed using 2D and/or 3D images displayed on flat screens. This review will update the reader on the definition and processes of digital holography, holographic applications in radiology, limitations of holography and DHI and their significance in the future of radiology. Furthermore, the review elaborates upon the many open questions on how to exploit DHI fully in radiological practice.

Keywords: 
augmented reality • digital holographic imaging • picture archiving and communication system • radiology • virtual reality
References: 

1. Mishra S. Hologram the future of medicine - From Star Wars to clinical imaging. Indian Heart J. 2017;69(4):566-567. doi:10.1016/j.ihj.2017.07.017
2. Gabor D. A new microscopic principle. Nature. 1948;161(4098):777. doi:10.1038/161777a0
3. Held RT, Hui TT. A guide to stereoscopic 3D displays in medicine. Acad Radiol. 2011;18(8):1035-1048. doi:10.1016/j.acra.2011.04.005
4. Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, et al. Recent advances in digital holography [invited]. Appl Opt. 2014;53(27):G44-G63. doi:10.1364/AO.53.000G44
5. Yu X, Hong J, Liu C, Cross M, Haynie DT, Kim MK. Four-dimensional motility tracking of biological cells by digital holographic microscopy. J Biomed Opt. 2014;19(4):045001. doi:10.1117/1.JBO.19.4.045001
6. Skolnick AA.  New holographic process provides noninvasive, 3-D anatomic views. JAMA. 1994;271(1):5-8.
7. Hunziker PR, Smith S, Scherrer-Crosbie M, Liel-Cohen N, Levine RA, Nesbitt R, et al. Dynamic holographic imaging of the beating human heart. Circulation. 1999;99(5):1-6. doi:10.1161/01.cir.99.5.1
8. Addetia K, Lang RM. The future has arrived. Are we ready? Eur Heart J Cardiovasc Imaging. 2016;17(8):850-851. doi:10.1093/ehjci/jew111
9. Bruckheimer E, Rotschild C, Dagan T, Amir G, Kaufman A, Gelman S, Birk E. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging. 2016;17(8):845-849. doi:10.1093/ehjci/jew087
10. Kharat AT, Kalra R, Shah A, Singh A.  Exploring the potential use of holographic imaging in radiology.  Appl Radiol.  2016;45(12):19–22.
11. Plesniak W, Pappu R, Underkoffler J, Lucente M, St.-Hilaire P. In: Benton SA, Bove VM, editors. Holographic Imaging. 1st ed. Hoboken, New Jersey: Wiley-Interscience; 2008:207–229.
12. Philips and RealView Imaging Conclude World’s First Study to Evaluate Live 3D Holographic Imaging in Interventional Cardiology. https://www.meddeviceonline.com/doc/philips-realview-imaging-holographic....
13. Buhmann JM, Malik J, Perona P. Image recognition: visual grouping, recognition, and learning. Proc Natl Acad Sci U S A. 1999;96(25):14203-14204. doi:10.1073/pnas.96.25.14203
14. Lepanto L, Paré G, Aubry D, Robillard P, Lesage J. Impact of PACS on dictation turnaround time and productivity. J Digit Imaging. 2006;19(1):92-97. doi:10.1007/s10278-005-9245-8
15. Colang J, Johnston J. PACS storage technology update: holographic storage. Radiol Manage. 2006;28(3):38-49.
16. Nagy P, Farmer J. Demystifying data storage: archiving options for PACS. Appl Radiol. 2004;33(5):18–22.
17. Liu Y, Kitamura K, Ravi G, Takekawa S, Nakamura M. Growth and two-color holographic storage properties of Mn-doped lithium niobate crystals with varying Li/Nb ratio. Journal of Applied Physics. 2004;96(11):5996–6001. doi: 10.1063/1.1812824
18. Bove VM. Display holography’s digital second act. Proceedings of the IEEE. 2012;100(4):918–928. doi: 10.1109/JPROC.2011.2182071.
19. Galeotti JM, Siegel M, Stetten G. Real-time tomographic holography for augmented reality. Opt Lett. 2010;35(14):2352-2354. doi:10.1364/OL.35.002352
20. Del Socorro Hernández-Montes M, Furlong C, Rosowski JJ, Hulli N, Harrington E, Cheng JT, Ravicz ME, Santoyo FM.  Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J Biomed Opt. 2009;14(3):034023. doi:10.1117/1.3153898
21. Biwasaka H, Saigusa K, Aoki Y. The applicability of holography in forensic identification: a fusion of the traditional optical technique and digital technique. J Forensic Sci. 2005;50(2):393-399.
22. Lee SL, Lerotic M, Vitiello V, Giannarou S, Kwok KW, Visentini-Scarzanella M, Yank GZ. From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Comput Med Imaging Graph. 2010;34(1):33-45. doi:10.1016/j.compmedimag.2009.07.007
23. Soler L, Nicolau S, Pessaux P, Mutter D, Marescaux J. Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surg Nutr. 2014;3(2):73-81. doi:10.3978/j.issn.2304-3881.2014.02.03
24. Frejlich J, de Oliveira I, Arizmendi L, Carrascosa M. Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation. Appl Opt. 2007;46(2):227-233. doi:10.1364/ao.46.000227
25. Kucirkova A. What Can We Expect from Hologram Technology in the Future? Published Jul 17, 2018. Available from: https://www.nasdaq.com/articles/what-can-we-expect-hologram-technology-f....

Download Article
Received June 6, 2020.
Accepted July 17, 2020.
©2020 International Medical Research and Development Corporation.