Biomedicine in the COVID Age: Opportunities, Responses, and Challenges

Gundu H. R. Rao

International Journal of Biomedicine. 2021;11(3):241-249.
DOI: 10.21103/Article11(3)_RA1
Originally published September 9, 2021


According to one of the earliest definitions, biomedicine means “clinical medicine based on the principles of physiology and biochemistry.” Clinicians for quite some time preferred the use of the term medical research to describe what they considered the clinical findings pertaining to various issues related to clinical studies. Since the time when the basic molecules of life, deoxyribonucleic acids, were characterized and the genetic code elucidated, there has been great excitement, anticipation, and promise for the development of precision and personalized medicine. However, the progress has been considerably slow and at times disappointing. The unprecedented coronavirus disease created a worldwide panic and exposed all our weaknesses and unpreparedness. It also demonstrated a global demand for better public health infrastructure and preparedness to combat future pandemics. This unprecedented public health crisis acted as a great stimulus for putting together a concerted effort to develop vaccines. According to the experts, the time was right and within 48 hours after the information on the SARS-CoV-2 genome was posted, Moderna scientists had on paper a workable mRNA, which would code for the spike protein. The immune engineers at Moderna as well as BioNTech were able to put together a lipid nanoparticle delivery system for safe delivery of this precious cargo to the appropriate cells. Professor Cody Meissner at Tufts University School of Medicine in Boston says, “It is absolutely astonishing that this happened [COVID Vaccine development] in such a short time—to me, it is equivalent to putting a person on the Moon.” It is indeed a great achievement, and it demonstrated the power of basic science and emerging technologies.
The extraordinary success of mRNA vaccines has opened new avenues for mRNA-based therapies. mRNAs, siRNAs, and non-coding miRNAs will play a very important role as novel therapeutics soon. Furthermore, this success has acted as a catalyst for ongoing work on the use of small RNAs for therapeutic purposes. Having said that, I must say that there are a great many challenges that need to be addressed.

SARS-CoV-2 • COVID-19 • biomedicine • vaccine

1. Cutler DM, Summers LH. The COVID-19 Pandemic and the $16 Trillion Virus. JAMA. 2020 Oct 20;324(15):1495-1496. doi: 10.1001/jama.2020.19759. 
2. Zhu H, Wei L, Niu P. The novel coronavirus outbreak in Wuhan, China. Glob Health Res Policy. 2020 Mar 2;5:6. doi: 10.1186/s41256-020-00135-6.
3. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al.; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020 May 14;55(5):2000547. doi: 10.1183/13993003.00547-2020. 
4. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW; the Northwell COVID-19 Research Consortium, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020 May 26;323(20):2052-2059. doi: 10.1001/jama.2020.6775. Erratum in: JAMA. 2020 May 26;323(20):2098.
5. Wadman M. Why COVID-19 is more deadly in people with obesity-even if they are young? Science 2020; doi:10.1126/science.abe7010
6. Rao GHR. SARS-CoV-2 biochemistry, Transmission, Clinical Manifestations and Prevention. International Journal of Biomedicine. 2020;10(4):303-311.
7. Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I, Lacey B, Massaro JM, D'Agostino RB Sr, White M. Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ. 2020 Jul 15;370:m2743. doi: 10.1136/bmj.m2743.
8. Chowdhury R, Heng K, Shawon MSR, Goh G, Okonofua D, Ochoa-Rosales C, Gonzalez-Jaramillo V, Bhuiya A, Reidpath D, Prathapan S, Shahzad S, Althaus CL, Gonzalez-Jaramillo N, Franco OH; Global Dynamic Interventions Strategies for COVID-19 Collaborative Group. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. Eur J Epidemiol. 2020 May;35(5):389-399. doi: 10.1007/s10654-020-00649-w. 
9. Ledford H. Six months of COVID vaccines: what 1.7 billion doses have taught scientists. Nature. 2021 Jun;594(7862):164-167. doi: 10.1038/d41586-021-01505-x. 
10. Yeagle P. The potent power of basic research. Sci Adv. 2021 Jun 30;7(27):eabj8363. doi: 10.1126/sciadv.abj8363. 
11. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity. 2019 May 21;50(5):1132-1148. doi: 10.1016/j.immuni.2019.04.011. 
12. Ciabattini A, Pettini E, Fiorino F, Pastore G, Andersen P, Pozzi G, Medaglini D. Modulation of Primary Immune Response by Different Vaccine Adjuvants. Front Immunol. 2016 Oct 17;7:427. doi: 10.3389/fimmu.2016.00427.
13. Fu G, Guy CS, Chapman NM, Palacios G, Wei J, Zhou P, et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature. 2021 Jul;595(7869):724-729. doi: 10.1038/s41586-021-03692-z.
14. Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021 Jul;595(7867):426-431. doi: 10.1038/s41586-021-03696-9. 
15. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021 Jul;27(7):1205-1211. doi: 10.1038/s41591-021-01377-8.
16. Dolgin E. 'Super-antibodies' could curb COVID-19 and help avert future pandemics. Nat Biotechnol. 2021 Jul;39(7):783-785. doi: 10.1038/s41587-021-00980-x. Erratum in: Nat Biotechnol. 2021 Jun 29;: 
17. Ezzikouri S, Nourlil J, Tsukiyama-Kohara K, Kohara M, El Ossmani H, Windisch MP, Benjelloun S. Nanobodies: an unexplored opportunity to combat COVID-19. J Biomol Struct Dyn. 2020 Nov 10:1-3. doi: 10.1080/07391102.2020.1845801.
18. Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep. 2020 Dec 22;10(1):22370. doi: 10.1038/s41598-020-79036-0. 
19. Jang WD, Jeon S, Kim S, Lee SY. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):e2024302118. doi: 10.1073/pnas.2024302118. 
20. Nishii R, Mizuno T, Rehling D, Smith C, Clark BL, Zhao X, et al. NUDT15 polymorphism influences the metabolism and therapeutic effects of acyclovir and ganciclovir. Nat Commun. 2021 Jul 7;12(1):4181. doi: 10.1038/s41467-021-24509-7.
21.Seth S, Batra J, Srinivasan S. COVID-19: Targeting Proteases in Viral Invasion and Host Immune Response. Front Mol Biosci. 2020 Oct 9;7:215. doi: 10.3389/fmolb.2020.00215.
22. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-412. doi: 10.1126/science.abb3405. 
23. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006841. doi: 10.1101/cshperspect.a006841. 
24. Ray S, Fatima Z, Saxena A. Drugs for AIDS. Mini Rev Med Chem. 2010 Feb;10(2):147-61. doi: 10.2174/138955710791185145. 
25. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J Med Chem. 2020 Nov 13:acs.jmedchem.0c01140. doi: 10.1021/acs.jmedchem.0c01140. 
26. Jang WD, Jeon S, Kim S, Lee SY. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):e2024302118. doi: 10.1073/pnas.2024302118. 
27. Payne D. RNA therapies. Nature. 2019 Oct;574(7778):S1. doi: 10.1038/d41586-019-03067-5. 
28. Regalado A. Messenger RNA Vaccines. MIT Technology Reviews. 2021;124(2):29-34.
29. Rao GHR. Biomedical Research and Healthcare: Opportunities, Expectations and Limitations. International Journal of Biomedicine. 2018;8(4):273-279.
30.  Rao GHR. Predictive, Preventive, and Precision Medicine: The future of healthcare. Viewpoint. United J. Int. Med. 2018;1(1):1-3.
31.  Rao GHR: Prevention of Acute Vascular Events: Precision Medicine, Personalized Medicine, and Conventional Medicine. EC Clin. & Medical Case Reports.2020;3(2):01-03.
32. Rao GHR: Importance of studying disease and disease process. Editorial. Developments in Clin. Med. Pathol. Crimson Publ. 2018;1:1.
33. Cohn JN, Hoke L, Whitwam W, Sommers PA, Taylor AL, Duprez D, Roessler R, Florea N. Screening for early detection of cardiovascular disease in asymptomatic individuals. Am Heart J. 2003 Oct;146(4):679-85. doi: 10.1016/S0002-8703(03)00499-X.
34. Rao GHR. COVID-19 and Cardiometabolic Diseases. Guest Editorial. EC Cardiol. 2020;7(6):08-12.
35. Rao GHR. Coronavirus Disease and Acute Vascular Events. Clin Appl Thromb Hemost. 2020 Jan-Dec;26:1076029620929091. doi: 10.1177/1076029620929091. 
36. Rao GHR. Coronavirus (COVID-19), Comorbidities, and Acute Vascular Events; Guest Editorial. ECCMC EC Clinical Case Reports. 2020;3(6):87-91.
37. Rao GHR Coronavirus Disease (Covid-19), Comorbidities, and Clinical Manifestations. Guest Editorial. EC Diab Met Res. 2020; 4(6):27-33.
38. Rao GHR. Coronavirus Disease (Covid-19): A Disease of the Vascular Endothelium. Series Cardiology Res. 2020;2(1):23-27.
39. Rao GHR: Coronavirus Transmission, Vascular Dysfunction and Pathology. J Cardiol Res Rev & Reps. 2020;1(3):1-4.
40. Rao GHR. Excess weight, Obesity, Diabetes and Coronavirus Disease. Arch Diab & Obesity.2020;3(1). MS ID.000152. doi: 10.32474/ADO.2020.03.000152.
41. Rao GHR. Clinical manifestation of coronavirus disease as it relates to cardio-vascular health. Front J Cardiol & Vasc Med. 2020;1(1). IDFJCCM-20-103.
42. Rao GHR. Syndemic of Coronavirus Disease and Metabolic Diseases: Global Perspective. EC Endocrinol Met Res. 2021;6(4):28-32.
43. Rao GHR. Twindemic of Coronavirus Disease (COVID-19) and Cardiometabolic Diseases. International Journal of Biomedicine. 2021;11(2):111-122.
44. Callaway E. The quest to find genes that drive severe COVID. Nature. 2021 Jul;595(7867):346-348. doi: 10.1038/d41586-021-01827-w. 
45. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021 Jul 8. doi: 10.1038/s41586-021-03767-x. 
46. Zhou Y, Yang Q, Chi J, Dong B, Lv W, Shen L, Wang Y. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. 2020 Oct;99:47-56. doi: 10.1016/j.ijid.2020.07.029. 
47. Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, Aung K, Mukherjee D, Dwivedi AK. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci Rep. 2021 Apr 20;11(1):8562. doi: 10.1038/s41598-021-88130-w. 
48. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, rt al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020 Oct;586(7830):567-571. doi: 10.1038/s41586-020-2622-0. 
49. May M. After COVID-19 successes, researchers push to develop mRNA vaccines for other diseases. Nat Med. 2021 Jun;27(6):930-932. doi: 10.1038/s41591-021-01393-8. 
50. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021 Feb 25;20(1):41. doi: 10.1186/s12943-021-01335-5.
51. Ryther RC, Flynt AS, Phillips JA 3rd, Patton JG. siRNA therapeutics: big potential from small RNAs. Gene Ther. 2005 Jan;12(1):5-11. doi: 10.1038/ 
52. Rossbach M. Small non-coding RNAs as novel therapeutics. Curr Mol Med. 2010 Jun;10(4):361-8. doi: 10.2174/156652410791317048.

Download Article
Received July 16, 2021.
Accepted September 4, 2021.
©2021 International Medical Research and Development Corporation.