Phosphorylation and Fragmentation of the Cardiac Troponin T: Mechanisms, Role in Pathophysiology and Laboratory Diagnosis

Aleksey M. Chaulin

International Journal of Biomedicine. 2021;11(3):250-259.
DOI: 10.21103/Article11(3)_RA2
Originally published September 9, 2021


Cardiac troponin T (cTnT), a protein essential for calcium-regulated, myofibrillar ATPase activity, is extremely sensitive to the action of a significant number of intra- and extracellular enzymes, the action of which causes post-translational modifications (PTMs) of amino acid structure and functioning cTnT. PTMs of cTnT may play important roles in the regulation of cardiac contractility. The vast majority of cTnT modifications involve the phosphorylation by a variety of Ser/Thr kinases, including PKC. At the same time, the activity of cTnT phosphorylation can change under physiological conditions and in some CVDs, including HF, AMI, and arrhythmias. Along with cTnT phosphorylation, cTnT fragmentation occurs, the activity of which can also change. This article discusses the mechanisms of cTnT phosphorylation and fragmentation, discusses the important role of these processes in the pathophysiology and laboratory diagnosis of some CVD, and notes promising directions for further research.

cardiac troponin T • phosphorylation • fragmentation • cardiovascular disease
  1. Takeda S, Yamashita A, Maeda K, Maéda Y. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature. 2003 Jul 3;424(6944):35-41. doi: 10.1038/nature01780. 
  2. Gomes AV, Potter JD, Szczesna-Cordary D. The role of troponins in muscle contraction. IUBMB Life. 2002 Dec;54(6):323-33. doi: 10.1080/15216540216037.
  3. Filatov VL, Katrukha AG, Bulargina TV, Gusev NB. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc). 1999 Sep;64(9):969-85. 
  4. Solaro RJ. Integration of myofilament response to Ca2+ with cardiac pump regulation and pump dynamics. Am J Physiol. 1999 Dec;277(6 Pt 2):S155-63. doi: 10.1152/advances.1999.277.6.S155.
  5. Rouslin W, Broge CW. Isoform-independent heart rate-related variation in cardiac myofibrillar Ca(2+)-activated Mg(2+)-ATPase activity. Am J Physiol. 1996 May;270(5 Pt1):C1271-6. doi: 10.1152/ajpcell.1996.270.5.C1271. 
  6. Moreira CM, Meira EF, Vestena L, Stefanon I, Vassallo DV, Padilha AS. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions. Clinics (Sao Paulo). 2012;67(5):489-96. doi: 10.6061/clinics/2012(05)14. 
  7. Dong X, Sumandea CA, Chen YC, Garcia-Cazarin ML, Zhang J, Balke CW, Sumandea MP, Ge Y. Augmented phosphorylation of cardiac troponin I in hypertensive heart failure. J Biol Chem. 2012 Jan 6;287(2):848-57. doi: 10.1074/jbc.M111.293258.
  8. Chaulin AM, Svechkov NA, Volkova SL, Grigoreva YV. Diagnostic value of cardiac troponins in elderly patients without myocardial infarction. Modern Problems of Science and Education. 2020;6. doi: 10.17513/spno.30302. [Article in Russian].
  9. Chaulin AM, Duplyakov DV. Increased cardiac troponins, not associated with acute coronary syndrome. Part 1. Cardiology: News, Views, Education. 2019;7(2):13–23. doi: 10.24411/2309-1908-2019-12002. [Article in Russian].
  10. Chaulin A.M., Duplyakov D.V. Increased cardiac troponins, not associated with acute coronary syndrome. Part 2. Cardiology: News, Views, Education. 2019;7(2):24–35.  doi: 10.24411/2309-1908-2019-12003. [Article in Russian].
  11. Pervan P, Svagusa T, Prkacin I, Savuk A, Bakos M, Perkov S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae. 2017;13:62–64. doi: 10.22514/sv133.062017.13
  12. Chaulin AM, Duplyakova PD, Bikbaeva GR, Tukhbatova AA, Grigorieva EV, Duplyakov DV. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: a pilot study. Russian Journal of Cardiology. 2020;25(12):3814. doi: 10.15829/1560-4071-2020-3814. [Article in Russian].
  13. Chaulin AM, Karslyan LS, Bazyuk EV, Nurbaltaeva DA, Duplyakov DV. [Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids]. Kardiologiia. 2019 Dec 11;59(11):66-75. Russian. doi: 10.18087/cardio.2019.11.n414. [Article in Russian].
  14. Jin JP, Zhang Z, Bautista JA. Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr. 2008;18(2):93-124. doi: 10.1615/critreveukargeneexpr.v18.i2.10. 
  15. Perry SV. Troponin T: genetics, properties and function. J Muscle Res Cell Motil. 1998 Aug;19(6):575-602. doi: 10.1023/a:1005397501968. 
  16. Wei B, Jin JP. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene. 2016 May 10;582(1):1-13. doi: 10.1016/j.gene.2016.01.006.
  17. Anderson PA, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, Kay BK. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res. 1995 Apr;76(4):681-6. doi: 10.1161/01.res.76.4.681. 
  18. Mesnard-Rouiller L, Mercadier JJ, Butler-Browne G, Heimburger M, Logeart D, Allen PD, Samson F. Troponin T mRNA and protein isoforms in the human left ventricle: pattern of expression in failing and control hearts. J Mol Cell Cardiol. 1997 Nov;29(11):3043-55. doi: 10.1006/jmcc.1997.0519.
  19. Duplyakov DV, Chaulin AM. Mutations of heart troponines, associated with cardiomyopathies. Cardiology: News, Views, Education. 2019;7(3):8–17. doi: 10.24411/2309-1908-2019-13001. [Article in Russian].
  20. Villar-Palasi C, Kumon A. Purification and properties of dog cardiac troponin T kinase. J Biol Chem. 1981 Jul 25;256(14):7409-15.
  21. Gusev NB, Barskaya NV, Verin AD, Duzhenkova IV, Khuchua ZA, Zheltova AO. Some properties of cardiac troponin T structure. Biochem J. 1983 Jul 1;213(1):123-9. doi: 10.1042/bj2130123.
  22. Noland TA Jr, Raynor RL, Kuo JF. Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem. 1989 Dec 5;264(34):20778-85. 
  23. Swiderek K, Jaquet K, Meyer HE, Schächtele C, Hofmann F, Heilmeyer LM Jr. Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. Eur J Biochem. 1990 Jul 5;190(3):575-82. doi: 10.1111/j.1432-1033.1990.tb15612.x.
  24. Katoh N, Wise BC, Kuo JF. Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem J. 1983 Jan 1;209(1):189-95. doi: 10.1042/bj2090189.
  25. Dubois-Deruy E, Belliard A, Mulder P, Bouvet M, Smet-Nocca C, Janel S, Lafont F, Beseme O, Amouyel P, Richard V, Pinet F. Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure. Cardiovasc Res. 2015 Jul 1;107(1):56-65. doi: 10.1093/cvr/cvv136. 
  26. Noland TA Jr, Kuo JF. Protein kinase C phosphorylation of cardiac troponin T decreases Ca(2+)-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochem J. 1992 Nov 15;288 ( Pt 1)(Pt 1):123-9. doi: 10.1042/bj2880123. 
  27. Wei B, Jin JP. Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys. 2011 Jan 15;505(2):144-54. doi: 10.1016/ 
  28. Sumandea MP, Burkart EM, Kobayashi T, De Tombe PP, Solaro RJ. Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Ann N Y Acad Sci. 2004 May;1015:39-52. doi: 10.1196/annals.1302.004. 
  29. Noland TA Jr, Kuo JF. Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. J Biol Chem. 1991 Mar 15;266(8):4974-8. 
  30. Jideama NM, Noland TA Jr, Raynor RL, Blobe GC, Fabbro D, Kazanietz MG, Blumberg PM, Hannun YA, Kuo JF. Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem. 1996 Sep 20;271(38):23277-83. doi: 10.1074/jbc.271.38.23277. 
  31. Sumandea MP, Pyle WG, Kobayashi T, de Tombe PP, Solaro RJ. Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem. 2003 Sep 12;278(37):35135-44. doi: 10.1074/jbc.M306325200. 
  32. Sumandea MP, Vahebi S, Sumandea CA, Garcia-Cazarin ML, Staidle J, Homsher E. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Biochemistry. 2009 Aug 18;48(32):7722-31. doi: 10.1021/bi900516n. 
  33. Huang X, Walker JW. Myofilament anchoring of protein kinase C-epsilon in cardiac myocytes. J Cell Sci. 2004 Apr 15;117(Pt 10):1971-8. doi: 10.1242/jcs.01044. 
  34. Steinberg SF. Cardiac actions of protein kinase C isoforms. Physiology (Bethesda). 2012 Jun;27(3):130-9. doi: 10.1152/physiol.00009.2012. 
  35. Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, et al. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation. 1999 Jan 26;99(3):384-91. doi: 10.1161/01.cir.99.3.384. 
  36. Steinberg SF, Goldberg M, Rybin VO. Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol. 1995 Jan;27(1):141-53. doi: 10.1016/s0022-2828(08)80014-4. 
  37. Xiao L, Zhao Q, Du Y, Yuan C, Solaro RJ, Buttrick PM. PKCepsilon increases phosphorylation of the cardiac myosin binding protein C at serine 302 both in vitro and in vivo. Biochemistry. 2007 Jun 12;46(23):7054-61. doi: 10.1021/bi700467k.
  38. Wu SC, Solaro RJ. Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J Biol Chem. 2007;282(42):30691-8.
  39. Buscemi N, Foster DB, Neverova I, Van Eyk JE. p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circ Res. 2002;91(6):509-16.
  40. Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res. 2004 Feb 6;94(2):194-200. doi: 10.1161/01.RES.0000111522.02730.56.
  41. Monasky MM, Taglieri DM, Patel BG, Chernoff J, Wolska BM, Ke Y, Solaro RJ. p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation. Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H224-30. doi: 10.1152/ajpheart.00612.2011. 
  42. Jideama NM, Crawford BH, Hussain AK, Raynor RL. Dephosphorylation specificities of protein phosphatase for cardiac troponin I, troponin T, and sites within troponin T. Int J Biol Sci. 2006;2(1):1-9. doi: 10.7150/ijbs.2.1. 
  43. Gotoh Y, Cooper JA. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem. 1998 Jul 10;273(28):17477-82. doi: 10.1074/jbc.273.28.17477. 
  44. He X, Liu Y, Sharma V, Dirksen RT, Waugh R, Sheu SS, Min W. ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes. Am J Pathol. 2003 Jul;163(1):243-51. doi: 10.1016/S0002-9440(10)63647-4. 
  45. Vahebi S, Kobayashi T, Warren CM, de Tombe PP, Solaro RJ. Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res. 2005 Apr 15;96(7):740-7. doi: 10.1161/01.RES.0000162457.56568.7d. 
  46. Pfleiderer P, Sumandea MP, Rybin VO, Wang C, Steinberg SF. Raf-1: a novel cardiac troponin T kinase. J Muscle Res Cell Motil. 2009;30(1-2):67-72. doi: 10.1007/s10974-009-9176-y. 
  47. Noguchi T, Hünlich M, Camp PC, Begin KJ, El-Zaru M, Patten R, Leavitt BJ, Ittleman FP, Alpert NR, LeWinter MM, VanBuren P. Thin-filament-based modulation of contractile performance in human heart failure. Circulation. 2004 Aug 24;110(8):982-7. doi: 10.1161/01.CIR.0000139334.43109.F9. 
  48. Goldspink PH, Montgomery DE, Walker LA, Urboniene D, McKinney RD, Geenen DL, Solaro RJ, Buttrick PM. Protein kinase Cepsilon overexpression alters myofilament properties and composition during the progression of heart failure. Circ Res. 2004 Aug 20;95(4):424-32. doi: 10.1161/01.RES.0000138299.85648.92. 
  49. Belin RJ, Sumandea MP, Sievert GA, Harvey LA, Geenen DL, Solaro RJ, de Tombe PP. Interventricular differences in myofilament function in experimental congestive heart failure. Pflugers Arch. 2011 Dec;462(6):795-809. doi: 10.1007/s00424-011-1024-4. 
  50. Walker LA, Walker JS, Ambler SK, Buttrick PM. Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice. J Mol Cell Cardiol. 2010 Jun;48(6):1180-6. doi: 10.1016/j.yjmcc.2009.09.010.
  51. Avner BS, Shioura KM, Scruggs SB, Grachoff M, Geenen DL, Helseth DL Jr, Farjah M, Goldspink PH, Solaro RJ. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Mol Cell Biochem. 2012 Apr;363(1-2):203-15. doi: 10.1007/s11010-011-1172-z. 
  52. van der Velden J, Merkus D, de Beer V, Hamdani N, Linke WA, Boontje NM, Stienen GJ, Duncker DJ. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction. Front Physiol. 2011 Nov 24;2:83. doi: 10.3389/fphys.2011.00083. 
  53. Dubois E, Richard V, Mulder P, Lamblin N, Drobecq H, Henry JP, Amouyel P, Thuillez C, Bauters C, Pinet F. Decreased serine207 phosphorylation of troponin T as a biomarker for left ventricular remodelling after myocardial infarction. Eur Heart J. 2011 Jan;32(1):115-23. doi: 10.1093/eurheartj/ehq108. 
  54. Eiras S, Narolska NA, van Loon RB, Boontje NM, Zaremba R, Jimenez CR, Visser FC, Stooker W, van der Velden J, Stienen GJ. Alterations in contractile protein composition and function in human atrial dilatation and atrial fibrillation. J Mol Cell Cardiol. 2006 Sep;41(3):467-77. doi: 10.1016/j.yjmcc.2006.06.072. 
  55. El-Armouche A, Boknik P, Eschenhagen T, Carrier L, Knaut M, Ravens U, Dobrev D. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006 Aug 15;114(7):670-80. doi: 10.1161/CIRCULATIONAHA.106.636845. 
  56. Murphy AM, Kögler H, Georgakopoulos D, McDonough JL, Kass DA, Van Eyk JE, Marbán E. Transgenic mouse model of stunned myocardium. Science. 2000 Jan 21;287(5452):488-91. doi: 10.1126/science.287.5452.488. 
  57. Colantonio DA, Van Eyk JE, Przyklenk K. Stunned peri-infarct canine myocardium is characterized by degradation of troponin T, not troponin I. Cardiovasc Res. 2004 Aug 1;63(2):217-25. doi: 10.1016/j.cardiores.2004.04.006. 
  58. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6252-6. doi: 10.1073/pnas.092022999. 
  59. Zhang Z, Biesiadecki BJ, Jin JP. Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage. Biochemistry. 2006 Sep 26;45(38):11681-94. doi: 10.1021/bi060273s. 
  60. Di Lisa F, De Tullio R, Salamino F, Barbato R, Melloni E, Siliprandi N, Schiaffino S, Pontremoli S. Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. Biochem J. 1995 May 15;308 ( Pt 1)(Pt 1):57-61. doi: 10.1042/bj3080057. 
  61. Biesiadecki BJ, Chong SM, Nosek TM, Jin JP. Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry. 2007 Feb 6;46(5):1368-79. doi: 10.1021/bi061949m.
  62. Pan BS, Gordon AM, Potter JD. Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem. 1991 Jul 5;266(19):12432-8. 
  63. Fujita S, Maeda K, Maéda Y. Expression in Escherichia coli and a functional study of a beta-troponin T 25 kDa fragment of rabbit skeletal muscle. J Biochem. 1992 Sep;112(3):306-8. doi: 10.1093/oxfordjournals.jbchem.a123896. 
  64. Chandra M, Montgomery DE, Kim JJ, Solaro RJ. The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. J Mol Cell Cardiol. 1999 Apr;31(4):867-80. doi: 10.1006/jmcc.1999.0928.
  65. Madsen LH, Christensen G, Lund T, Serebruany VL, Granger CB, Hoen I, Grieg Z, Alexander JH, Jaffe AS, Van Eyk JE, Atar D. Time course of degradation of cardiac troponin I in patients with acute ST-elevation myocardial infarction: the ASSENT-2 troponin substudy. Circ Res. 2006 Nov 10;99(10):1141-7. doi: 10.1161/01.RES.0000249531.23654.e1. 
  66. Madsen LH, Lund T, Grieg Z, Nygaard S, Holmvang L, Jurlander B, Grande P, Christensen G, Atar D. Cardiac troponin I degradation in serum of patients with hypertrophic obstructive cardiomyopathy undergoing percutaneous septal ablation. Cardiology. 2009;114(3):167-73. doi: 10.1159/000226596. 
  67. Katrukha AG, Bereznikova AV, Filatov VL, Esakova TV, Kolosova OV, Pettersson K, Lövgren T, Bulargina TV, Trifonov IR, Gratsiansky NA, Pulkki K, Voipio-Pulkki LM, Gusev NB. Degradation of cardiac troponin I: implication for reliable immunodetection. Clin Chem. 1998 Dec;44(12):2433-40. 
  68. Wu AH, Feng YJ, Moore R, Apple FS, McPherson PH, Buechler KF, Bodor G. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clin Chem. 1998 Jun;44(6 Pt 1):1198-208. 
  69. Chaulin AM, Karslyan LS, Grigorieva EV, Nurbaltaeva DA, Duplyakov DV. Metabolism of cardiac troponins (Literature review). Complex Issues of Cardiovascular Diseases. 2019;8(4):103-115. [Article in Russian].
  70. Michielsen EC, Diris JH, Kleijnen VW, Wodzig WK, Van Dieijen-Visser MP. Investigation of release and degradation of cardiac troponin T in patients with acute myocardial infarction. Clin Biochem. 2007 Aug;40(12):851-5. doi: 10.1016/j.clinbiochem.2007.04.004. 
  71. Diris JH, Hackeng CM, Kooman JP, Pinto YM, Hermens WT, van Dieijen-Visser MP. Impaired renal clearance explains elevated troponin T fragments in hemodialysis patients. Circulation. 2004 Jan 6;109(1):23-5. doi: 10.1161/01.CIR.0000109483.45211.8F. 
  72. Michielsen EC, Diris JH, Hackeng CM, Wodzig WK, Van Dieijen-Visser MP. Highly sensitive immunoprecipitation method for extracting and concentrating low-abundance proteins from human serum. Clin Chem. 2005 Jan;51(1):222-4. doi: 10.1373/clinchem.2004.036251. 
  73. Cardinaels EP, Mingels AM, van Rooij T, Collinson PO, Prinzen FW, van Dieijen-Visser MP. Time-dependent degradation pattern of cardiac troponin T following myocardial infarction. Clin Chem. 2013 Jul;59(7):1083-90. doi: 10.1373/clinchem.2012.200543. 
  74. Streng AS, de Boer D, Bouwman FG, Mariman EC, Scholten A, van Dieijen-Visser MP, Wodzig WK. Development of a targeted selected ion monitoring assay for the elucidation of protease induced structural changes in cardiac troponin T. J Proteomics. 2016 Mar 16;136:123-32. doi: 10.1016/j.jprot.2015.12.028.
  75. Labugger R, McDonough JL, Neverova I, Van Eyk JE. Solubilization, two-dimensional separation and detection of the cardiac myofilament protein troponin T. Proteomics. 2002 Jun;2(6):673-8. doi: 10.1002/1615-9861(200206)2:6<673::AID-PROT673>3.0.CO;2-2. 
  76. deFilippi C, Seliger SL, Kelley W, Duh SH, Hise M, Christenson RH, Wolf M, Gaggin H, Januzzi J. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem. 2012 Sep;58(9):1342-51. doi: 10.1373/clinchem.2012.185322. 
  77. Dubin RF, Li Y, He J, Jaar BG, Kallem R, Lash JP, Makos G, Rosas SE, Soliman EZ, Townsend RR, Yang W, Go AS, Keane M, Defilippi C, Mishra R, Wolf M, Shlipak MG; CRIC Study Investigators. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013 Oct 22;14:229. doi: 10.1186/1471-2369-14-229. 
  78. Katrukha IA, Kogan AE, Vylegzhanina AV, Serebryakova MV, Koshkina EV, Bereznikova AV, Katrukha AG. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin Chem. 2017 Jun;63(6):1094-1100. doi: 10.1373/clinchem.2016.266635.
  79. Chaulin AM, Duplyakov DV. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers. International Journal of Biomedicine. 2020;10(3):198-205. doi: 10.21103/Article10(3)_RA3
  80. Chaulin AM, Abashina OE, Duplyakov DV. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russian Open Medical Journal 2020; 9: e0305. doi: 10.15275/rusomj.2020.0305
  81. Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020;9(3):69-80. doi: 10.17802/2306-1278-2020-9-3-69-80. [Article in Russian].  
  82. Chaulin AM, Duplyakov DV. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae. 2021.doi:10.22514/sv.2021.050.
  83. Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: mechanisms and clinical significance. Russian Journal of Cardiology. 2020;25(3S):4061. doi: 10.15829/1560-4071-2020-4061
  84. Chaulin AM, Duplyakov DV. Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1. Journal of Clinical Practice. 2020;11(3):75-84. doi: 10.17816/clinpract34284.
  85. Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: detection and central analytical characteristics. Cardiovascular Therapy and Prevention. 2021;20(2):2590. doi: 10.15829/1728-8800-2021-2590. [Article in Russian].
  86. Chaulin A. Cardiac Troponins: Contemporary Biological Data and New Methods of Determination. Vasc Health Risk Manag. 2021 Jun 3;17:299-316. doi: 10.2147/VHRM.S300002. PMID: 34113117

Download Article
Received June 11, 2021.
Accepted July 20, 2021.
©2021 International Medical Research and Development Corporation.