Genetic Predictors of Type 2 Diabetes in Yakuts

Nadezhda I. Pavlova, Aleksandra T. Diakonova, Vladislav A. Alekseev, Lyubovy A. Sydykova, Nadezhda E. Maksimova, Zoya A. Rudykh, Yana V. Chertovskikh, Dmitry A. Sychev, Vladimir V. Dodokhov, Tuyara I. Dmitrieva, Khariton A. Kurtanov

 
International Journal of Biomedicine. 2021;11(3):355-360.
DOI: 10.21103/Article11(3)_OA13
Originally published September 9, 2021

Abstract: 

The goal of this study was to investigate the distribution of alleles and genotypes of the KCNJ11 rs5219, PPARG rs1801282, TCF7L2 rs7903146/rs12255372 SNPs in Yakuts with T2D, in comparison with other ethnic populations.
Methods and Results: The study cohort consisted of 26 Yakut patients diagnosed with T2D (YKT2D). Genotyping of rs5219 (KCNJ11), rs1801282 (PPARG), rs7903146 and rs12255372 (TCF7L2) SNPs was performed by pyrosequencing using PyroMark Q48 Autoprep sequencer (QIAGEN).
The genotyping of the studied group of Yakuts did not reveal statistically significant differences between control groups and YKT2D patients with respect to the polymorphic variants of the KCNJ11, PPARG, and TCF7L2 genes. The allele frequency analysis of the polymorphisms of the KCNJ11, PPARG, and TCF7L2 genes demonstrated a low frequency of the risk T-allele in the TCF7L2 (rs7903146, rs12255372) in Asian populations, compared to other human populations. We identified three haplotypes [CG (90.5%), TT (6.8%), and TG (2.7%)] in the YKT2D cohort. Also, we observed a strong LD between two SNPs (rs7903146 and rs12255372) of the TCF7L2 gene in the majority of groups, including YKT2D (D '= 1, LOD = 4.92), except for African populations, where a very weak LD (D '= 0.001-0.435, LOD = 0.0-0.73) was observed.

Keywords: 
KCNJ11 • PPARG • TCF7L2 • type 2 diabetes • single nucleotide polymorphism
References: 
  1. Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013 Apr;36(4):1047-55. doi: 10.2337/dc12-1805.
  2. Gray IC, Campbell DA, Spurr NK. Single nucleotide polymorphisms as tools in human genetics. Hum Mol Genet. 2000 Oct;9(16):2403-8. doi: 10.1093/hmg/9.16.2403. 
  3. Miller RD, Kwok PY. The birth and death of human single-nucleotide polymorphisms: new experimental evidence and implications for human history and medicine. Hum Mol Genet. 2001 Oct 1;10(20):2195-8. doi: 10.1093/hmg/10.20.2195.
  4.  Taylor JG, Choi EH, Foster CB, Chanock SJ. Using genetic variation to study human disease. Trends Mol Med. 2001 Nov;7(11):507-12. doi: 10.1016/s1471-4914(01)02183-9. 
  5. Shastry BS. SNP alleles in human disease and evolution. J Hum Genet. 2002;47(11):561-6. doi: 10.1007/s100380200086. 
  6. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020 Jul;52(7):680-691. doi: 10.1038/s41588-020-0637-y.
  7. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152. 
  8. Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, Jang HC, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med. 2007 Feb;24(2):178-86. doi: 10.1111/j.1464-5491.2006.02050.x.
  9. Abdelhamid I, Lasram K, Meiloud G, Ben Halim N, Kefi R, Samb A, Abdelhak S, Houmeida A. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population. Prim Care Diabetes. 2014 Jul;8(2):171-5. doi: 10.1016/j.pcd.2013.10.006.
  10. Hasan NS, Kamel SA, Hamed M, Awadallah E, Rahman AHA, Musa NI, Hussein GHS. Peroxisome proliferator-activated receptor-γ polymorphism (rs1801282) is associated with obesity in Egyptian patients with coronary artery disease and type 2 diabetes mellitus. J Genet Eng Biotechnol. 2017 Dec;15(2):409-414. doi: 10.1016/j.jgeb.2017.08.002. 
  11. Zhou Y, Park SY, Su J, Bailey K, Ottosson-Laakso E, Shcherbina L, et al. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet. 2014 Dec 15;23(24):6419-31. doi: 10.1093/hmg/ddu359. 
  12. Dahlgren A, Zethelius B, Jensevik K, Syvänen AC, Berne C. Variants of the TCF7L2 gene are associated with beta cell dysfunction and confer an increased risk of type 2 diabetes mellitus in the ULSAM cohort of Swedish elderly men. Diabetologia. 2007 Sep;50(9):1852. doi: 10.1007/s00125-007-0746-5. 
  13. González-Sánchez JL, Martínez-Larrad MT, Zabena C, Pérez-Barba M, Serrano-Ríos M. Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia. 2008 Nov;51(11):1993-7. doi: 10.1007/s00125-008-1129-2. 
  14. Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, Staiger H, Stefan N, Häring HU, Fritsche A. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 2008 Apr;51(4):597-601. doi: 10.1007/s00125-008-0926-y.
  15. Silbernagel G, Renner W, Grammer TB, Hügl SR, Bertram J, Kleber ME, et al. Association of TCF7L2 SNPs with age at onset of type 2 diabetes and proinsulin/insulin ratio but not with glucagon-like peptide 1. Diabetes Metab Res Rev. 2011 Jul;27(5):499-505. doi: 10.1002/dmrr.1194. 
  16. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D'Amato C, Novelli G, et al. TCF7L2 gene polymorphisms and type 2 diabetes: association with diabetic retinopathy and cardiovascular autonomic neuropathy. Acta Diabetol. 2013 Oct;50(5):789-99. doi: 10.1007/s00592-012-0418-x. 
  17. Ren Q, Han XY, Wang F, Zhang XY, Han LC, Luo YY, Zhou XH, Ji LN. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008 Jul;51(7):1146-52. doi: 10.1007/s00125-008-1039-3. 
  18. Miyake K, Horikawa Y, Hara K, Yasuda K, Osawa H, Furuta H, et al. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects. J Hum Genet. 2008;53(2):174-180. doi: 10.1007/s10038-007-0231-5. 
  19. Bodhini D, Radha V, Dhar M, Narayani N, Mohan V. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism. 2007 Sep;56(9):1174-8. doi: 10.1016/j.metabol.2007.04.012. 
  20. Sale MM, Smith SG, Mychaleckyj JC, Keene KL, Langefeld CD, Leak TS, et al. Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African-American population enriched for nephropathy. Diabetes. 2007 Oct;56(10):2638-42. doi: 10.2337/db07-0012.
  21. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006 Mar;38(3):320-3. doi: 10.1038/ng1732.
  22. Ignatiev PM. Epidemic of type 2 diabetes in the world and in the Republic of Sakha (Yakutia). Novosibirsk: Izd. Nauka, 2011. [In Russian].
  23. HAPLOVIEW v.4.2 [Internet]. Available from: http://www.broadinstitute.org/scientific‐community/science/programs/medical‐and‐population‐genetics/haploview/haploview
  24. Gonen MS, Arikoglu H, Erkoc Kaya D, Ozdemir H, Ipekci SH, Arslan A, Kayis SA, Gogebakan B. Effects of single nucleotide polymorphisms in K(ATP) channel genes on type 2 diabetes in a Turkish population. Arch Med Res. 2012 May;43(4):317-23. doi: 10.1016/j.arcmed.2012.06.001. 
  25. He YY, Zhang R, Shao XY, Hu C, Wang CR, Lu JX, et al. Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients. Acta Pharmacol Sin. 2008 Aug;29(8):983-9. doi: 10.1111/j.1745-7254.2008.00840.x. 
  26. Chistiakov DA, Potapov VA, Khodirev DC, Shamkhalova MS, Shestakova MV, Nosikov VV. Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol. 2009 Mar;46(1):43-9. doi: 10.1007/s00592-008-0056-5.
  27. Godwill Azeh Engwa, Friday Nweke Nwalo, Chosen E. Obi, Christie Onyia, Opeolu Oyejide Ojo, Wilfred Fon Mbacham, Benjamin Ewa Ubi. Predominance of the A allele but no association of the KCNJ11 rs5219 E23K polymorphism with Type 2 Diabetes in a Nigerian population. Genet. Mol. Res. 2018;17(1); gmr16039889 doi: 10.4238/gmr16039889
  28. Wang X, Liu J, Ouyang Y, Fang M, Gao H, Liu L. The association between the Pro12Ala variant in the PPARγ2 gene and type 2 diabetes mellitus and obesity in a Chinese population. PLoS One. 2013 Aug 21;8(8):e71985. doi: 10.1371/journal.pone.0071985.
  29. Li Y, Dai L, Zhang J, Wang P, Chai Y, Ye H, et al. Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. Oncol Lett. 2012 Jan;3(1):107-112. doi: 10.3892/ol.2011.426.
  30. Youssef SM, Mohamed N, Afef S, Khaldoun BH, Fadoua N, Fadhel NM, Naceur SM. A Pro 12 Ala substitution in the PPARγ2 polymorphism may decrease the number of diseased vessels and the severity of angiographic coronary artery. Coron Artery Dis. 2013 Aug;24(5):347-51. doi: 10.1097/MCA.0b013e328361a95e.
  31. Lwow F, Dunajska K, Milewicz A, Laczmański L, Jedrzejuk D, Trzmiel-Bira A, Szmigiero L. ADRB3 and PPARγ2 gene polymorphisms and their association with cardiovascular disease risk in postmenopausal women. Climacteric. 2013 Aug;16(4):473-8. doi: 10.3109/13697137.2012.738721. 
  32. Tariq K, Malik SB, Ali SH, Maqsood SE, Azam A, Muslim I, et al. Association of Pro12Ala polymorphism in peroxisome proliferator activated receptor gamma with proliferative diabetic retinopathy. Mol Vis. 2013;19:710-7.
  33. Qi Q, Hu FB. Genetics of type 2 diabetes in European populations. J Diabetes. 2012 Sep;4(3):203-12. doi: 10.1111/j.1753-0407.2012.00224.x. 
  34. Malecki MT, Frey J, Klupa T, Skupien J, Walus M, Mlynarski W, Sieradzki J. The Pro12Ala polymorphism of PPARgamma2 gene and susceptibility to type 2 diabetes mellitus in a Polish population. Diabetes Res Clin Pract. 2003 Nov;62(2):105-11. doi: 10.1016/s0168-8227(03)00164-5. 
  35. Isakova ZhT, Talaybekova ET, Zhyrgalbekova BZh, et al. [Intergenic interactions and the contribution of polymorphic loci of genes KCNJ11, ADIPOQ, omentin, leptin, TCF7L2 and PPARg to the development of type 2 diabetes in Kyrgyz population: preliminary results of a case-control study using MDR analysis]. Endocrinology Problems. 2018; 64 (4): 216-225. doi: 10.14341 / probl8344. [Article in Russian].
  36. Nikitin AG, Potapov VA, Brovkin AN, Lavrikova EYu, Khodyrev DS, Shamkhalova MSh, et al. [Association of polymorphic markers of FTO, KCNJ11, SLC30A8 and CDKN2B genes with type 2 diabetes]. Molecular Biology. 2015; 49: (1): 119-128 DOI: 10.7868 / S0026898415010115. [Article in Russian].
  37. Ievleva KD, Bairova TA, Sheneman EA, Ayurova ZhG, Balzhieva VV, Novikova EA, et al. [Protective effect of the G-allele of the PPARG2 rs1801282 polymorphism on overweight and obesity in Mongoloid adolescents]. Journal. Med Biol Research 2019; 7 (4): 452-463. doi: 10.17238 / issn2542-1298.2019.7.4.452. [Article in Russian].
  38. Silko YuV, Nikonova TV, Ivanova ON, Stepanova SM, Shestakova MV, Dedov II. [Association of rs7903146 ​​polymorphism of the TCF7L2 gene with low concentrations of autoantibodies in latent autoimmune diabetes in adults (LADA)]. Diabetes 2016;19(3):199-203. doi: 10.14341 / DM2003418-2. [Article in Russian].
  39. Potapov VA, Chistiakov DA, Shamkhalova MS, Shestakova MV, Nosikov VV. TCF7L2 rs12255372 and SLC30A8 rs13266634 confer susceptibility to type 2 diabetes in a Russian population. Diabetes and Metabolic Syndrome Clinical Research Review 2009; 3(4): 219-223.
  40. Ensembl project [Internet]. Available from: https://www.ensembl.org/index.html

Download Article
Received July 31, 2021.
Accepted September 5, 2021.
©2021 International Medical Research and Development Corporation.