Lipids Peroxidation Products in Young Men with Type 1 Diabetes Mellitus

Marina A. Darenskaya, Elena V. Chugunova, Sergey I. Kolesnikov, Natalya V. Semenova, Lyubov I. Kolesnikova

 
International Journal of Biomedicine. 2022;12(2):232-236.
DOI: 10.21103/Article12(2)_OA5
Originally published June 5, 2022

Abstract: 

The aim of this research was to assess the level of lipid oxidation products level and the antioxidant defense state in young male patients with type 1 diabetes mellitus (T1DM) depending on the disease duration.
Materials and Methods: A total of 57 men of young reproductive age (average age of 30.25±8.51 years) with T1DM and an unsatisfactory glycemic profile, depending on the disease duration, were divided into 2 groups. Group 1 included 29 men (average age of 27.69±6.92 years) with a T1DM duration <5 years (2.72±1.61 years) and HbA1c level of 11.37±2.74%. Group 2 included 28 men (average age of 32.89±9.28 years) with a T1DM duration ≥5 years (12.93±5.69) and HbA1c level of 10.19±2.18%). The control group consisted of 28 men of the same age (29.71±4.59 years).  Spectrophotometric/spectrofluorometric methods and enzyme immunoassay were used.
Results: We found a significant increase in the values of CDs (by 2.04 times, P<0.0001), KD and CT (by 2.38 times, P<0.0001), TBARs (by 1.17 times, P=0.001), SB (by 2.6 times, P<0.0001), and retinol (by 1.44 times, P<0.0001) in Group 1 compared to the control group. In Group 2, there was a statistically significant increase in the levels of CDs (by 2.59 times, P<0.0001), KD and CT (by 2.94 times, P<0.0001), TBARs (by 1.49 times, P=0.001), SB (by 3.27 times, P<0.0001), and retinol (by 1.4 times, P=0.001) compared to the control group. The differences between the two groups with different duration of T1DM were characterized only by the CDs level, which was increased in Group 2 patients with a T1DM duration of ≥5 years (by 1.27 times, P=0.048) compared to Group 1 patients with a T1DM duration of < 5 years.
Conclusion: LPO parameters can serve as additional laboratory markers that characterize the course of T1DM and can be used to develop potential prevention and therapy strategies.

Keywords: 
type 1 diabetes mellitus • men • diabetes duration • lipid peroxidation • antioxidant defense
References: 
  1. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019 Jan;62(1):3-16. doi: 10.1007/s00125-018-4711-2. 
  2. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA. [Diabetes mellitus in the Russian Federation: prevalence, morbidity, mortality, parameters of carbohydrate metabolism and the structure of hypoglycemic therapy according to the Federal Register of Diabetes Mellitus, status 2017]. Diabetes Mellitus. 2018;21(3):144-159. doi: 10.14341/DM9686. [Article in Russian].
  3. Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants (Basel). 2019 Mar 25;8(3):72. doi: 10.3390/antiox8030072. 
  4. Lankin VZ, Tikhaze AK, Konovalova GG, Odinokova OA, Doroshchuk NA, Chazova IE. [Oxidative and carbonyl stress as a factors of the modification of proteins and DNA destruction in diabetes]. Ter Arkh. 2018 Nov 22;90(10):46-50. doi: 10.26442/terarkh2018901046-50. [Article in Russian].
  5. Kolesnikova LI, Darenskaya MA, Kolesnikov SI. [Free radical oxidation: a pathophysiologist's view]. Bulletin of Siberian Medicine. 2017;16(4):16-29. [Article in Russian].
  6. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020 Jul;21(7):363-383. doi: 10.1038/s41580-020-0230-3. 
  7. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med. 2021 May;171(2):179-189. doi: 10.1007/s10517-021-05191-7.
  8. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Gnusina SV, Kolesnikov SI. Ethnic aspects of lipid peroxidation process flow in patients with type 1 diabetes mellitus. Diabetes Technology and Therapeutics. 2019;21(S1):133.
  9. Ighodaro O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy. 2018;108:656-662. doi: 10.1016/j.biopha.2018.09.058
  10. Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy. Int J Endocrinol. 2018 Apr 1;2018:1875870. doi: 10.1155/2018/1875870. 
  11. Volchegorskiy IA, Nalimov AG, Yarovinskiy BG, Lifshitz RI. [Comparison of different approaches to the determination of lipid peroxidation products in heptane-isopropanol extracts of blood]. Questions of medicinal chemistry. 1989;35(1):127-131. [Article in Russian].
  12. Gavrilov VB, Gavrilova AR, Mazhul LM. [Analysis of methods for determining the products of lipid peroxidation in blood serum by the test with thiobarbituric acid]. Problems of medicinal chemistry. 1987;1:118-122. [Article in Russian].
  13. Chernyauskene RCh, Varskevichene ZZ, Grybauskas PS. [Simultaneous determination of the concentrations of vitamins E and A in blood serum]. Laboratornoe delo. 1984;6:362–365. [Article in Russian].
  14. Mikaelyan NP, Gurina AE, Nguyen KhZ, Terentiev AA, Mikaelyan KA. [The relationship between the process of lipid peroxidation, the activity of the antioxidant system and the fatty acid composition of the blood in patients with type 1 diabetes mellitus and its complications]. Russian Medical Journal. 2014; 4: 33-38. [Article in Russian].
  15. Rodríguez ML, Pérez S, Mena-Mollá S, Desco MC, Ortega ÁL. Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. Oxid Med Cell Longev. 2019 Nov 11;2019:4940825. doi: 10.1155/2019/4940825. 
  16. Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin Transl Immunology. 2018 Apr 18;7(4):e1016. doi: 10.1002/cti2.1016.
  17. Chowdary RP, Praveen D, Aanandhi VM. A prospective study on incidence of dyslipidemia in diabetes mellitus. Research Journal of Pharmacy and Technology. 2017;10(2):431-433. doi: 10.5958/0974-360X.2017.00086.5
  18. Darenskaya MA, Kolesnikov SI, Rychkova LV, Grebenkina LA, Kolesnikova LI. Oxidative stress and antioxidant defense parameters in different diseases: ethnic aspects. Free Radical Biology & Medicine. 2018;120(S1):60. doi: 10.1016/j.freeradbiomed.2018.04.199.
  19. Firoozrai M, Nourbakhsh M, Razzaghy-Azar M. Erythrocyte susceptibility to oxidative stress and antioxidant status in patients with type 1 diabetes. Diabetes Res Clin Pract. 2007 Sep;77(3):427-32. doi: 10.1016/j.diabres.2007.02.001. 
  20. Sobhi W, Khenchouche A. Involvement of oxidative stress in Type 1 diabetes. Am J Biomed Sci Res. 2020;6:538-543. doi: 10.34297/AJBSR.2020.06.001100.
  21. Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta. 2014 Sep;1840(9):2709-29. doi: 10.1016/j.bbagen.2014.05.017. 
  22. Niki E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors. 2008;34(2):171-80. doi: 10.1002/biof.5520340208. 
  23. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Osipova EV, Gnusina SV, Bardymova TA. Lipid Status and Predisposing Genes in Patients with Diabetes Mellitus Type 1 from Various Ethnic Groups. Bull Exp Biol Med. 2015 Dec;160(2):278-80. doi: 10.1007/s10517-015-3149-5. 
  24. Mirmiran P, Bahadoran Z, Azizi F. Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol Metab (Seoul). 2014 Dec 29;29(4):443-9. doi: 10.3803/EnM.2014.29.4.443. 
  25. Jain SK, McVie R, Bocchini JA Jr. Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology. 2006 Aug;13(3):163-70. doi: 10.1016/j.pathophys.2006.05.005.
  26. Chang CM, Hsieh CJ, Huang JC, Huang IC. Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetol. 2012 Dec;49 Suppl 1:S171-7. doi: 10.1007/s00592-012-0398-x.
  27. Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med. 2018 Feb 20;116:50-63. doi: 10.1016/j.freeradbiomed.2017.12.040. 
  28. Kolesnikova LI, Vlasov BY, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Vanteeva OA. Intensity of Oxidative Stress in Mongoloid and Caucasian Patients with Type 1 Diabetes Mellitus. Bull Exp Biol Med. 2016 Oct;161(6):767-769. doi: 10.1007/s10517-016-3505-0. 
  29. Balabolkin MI. [The role of protein glycation, oxidative stress in the pathogenesis of vascular complications in diabetes mellitus]. Diabetes Mellitus. 2002;4:8-16. [Article in Russian].
  30. Ladeia AM, Sampaio RR, Hita MC, Adan LF. Prognostic value of endothelial dysfunction in type 1 diabetes mellitus. World J Diabetes. 2014 Oct 15;5(5):601-5. doi: 10.4239/wjd.v5.i5.601.
  31. Lee S, Park H, Kim K, Sohn Y, Jang S, Park Y. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci Rep. 2017 Apr 21;7(1):1039. doi: 10.1038/s41598-017-01036-4. 
  32. Styskal J, Van Remmen H, Richardson A, Salmon AB. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?. Free Radical Biology and Medicine. 2012;52(1):46-58. doi: 10.1016/j.freeradbiomed.2011.10.441.
  33. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29;107(9):1058-70. doi: 10.1161/CIRCRESAHA.110.223545. 
  34. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000 Apr 13;404(6779):787-90. doi: 10.1038/35008121.
  35. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004 Oct 8;279(41):42351-4. doi: 10.1074/jbc.R400019200. 
  36. Makino A, Scott BT, Dillmann WH. Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia. 2010 Aug;53(8):1783-94. doi: 10.1007/s00125-010-1770-4. 
  37. Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003 Aug;14(8 Suppl 3):S233-6. doi: 10.1097/01.asn.0000077408.15865.06. 
  38. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006 Jan;290(1):E1-E8. doi: 10.1152/ajpendo.00329.2005. 
  39. Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis. 2016 Apr;26(4):285-92. doi: 10.1016/j.numecd.2016.01.006.
  40. Darenskaya MA, Shemyakina NA, Namokonov EV, Semenova NV, Kolesnikov SI, Kolesnikova LI. Glyoxal, metilglyoxal and malonic dialdehyde levels in patients with diabetes mellitus and microangiopathy of the lower extremities in the course of recommended therapy with added N-acetylcysteine. Diabetes Technology and Therapeutics. 2020;22(S1):760.
  41. Darenskaya MA, Grebenkina LA, Semenova NV, Gnusina SV, Kolesnikova LI, Kolesnikov SI. The use of integral indicator of oxidative stress in women with diabetes mellitus. Diabetes Technology and Therapeutics. 2018;20(1):143-144.
  42. Kolesnikova LI, Darenskaya MA, Semenova NV, Grebenkina LA, Suturina LV, Dolgikh MI, Gnusina SV. Lipid peroxidation and antioxidant protection in girls with type 1 diabetes mellitus during reproductive system development. Medicina (Kaunas, Lithuania). 2015;51(2):107-111. doi: 10.1016/j.medici.2015.01.009.
  43. Chistyakova OV, Sukhov IB, Shpakov AO. [The role of oxidative stress and antioxidant enzymes in the development of diabetes mellitus]. I.M. Sechenov Physiological Journal. 2017;103(9):987-1003. [Article in Russian].

Download Article
Received April 16, 2022.
Accepted May 24, 2022.
©2022 International Medical Research and Development Corporation.