Antibacterial Control of an Extremely Low Frequency Electric Field on Escherichia coli

Amr A. Abd-Elghany, Ebtesam A. Mohamad, Fadel M. Ali, Ahmed M. M. Yousef, Marwa Samy, Nawal Ayman, Seham AbdelFatah, Eslam Atef, Mohamed A. El-Sakhawy

 
International Journal of Biomedicine. 2022;12(2):293-298.
DOI: 10.21103/Article12(2)_OA17
Originally published June 5, 2022

Abstract: 

The aim of this study was to investigate the electric field frequency and the time of exposure that causes maximum inhibition of Escherichia coli (E. coli) growth.
Methods and Results: Bacterial suspensions were subjected to an extremely low frequency electric field (ELFEF) with a 0.1 Hz interval between 0.2 Hz and 0.4 Hz. The bacterial growth was observed through optical density (OD) readings. OD values were taken every hour for four hours to monitor bacterial growth in both exposed and unexposed samples. The antibiotic susceptibility test was done to determine the difference between the susceptibility of both exposed and unexposed bacterial samples. Structural changes in the exposed bacterial samples were monitored by transmission electron microscope (TEM). The bacterial growth curve revealed a highly significant growth inhibition after being exposed to 0.2 Hz at 2 hours’ exposure time. E. coli suspension exposed to ELFEF at inhibition frequency 0.2 Hz showed a significant increase in susceptibility to antibiotics Keflex, meropenem, and piperacillin-tazobactam. The current data suggest that treating E. coli with 0.2 Hz for 2 hours is an effective, prospective, and novel technique for reducing cellular growth and dramatic alteration in the cell membrane. TEM clarified the great destruction of the bacteria cell wall.

Keywords: 
extremely low frequency electric field • E. coli • optical density • transmission electron microscope
References: 
  1. Shupak NM, Prato FS, Thomas AW. Human exposure to a specific pulsed magnetic field: effects on thermal sensory and pain thresholds. Neurosci Lett. 2004 Jun 10;363(2):157-62. doi: 10.1016/j.neulet.2004.03.069.
  2. Rageh MM, El-Garhy MR, Mohamad EA. Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity. Naunyn Schmiedebergs Arch Pharmacol. 2020 Aug;393(8):1475-1485. doi: 10.1007/s00210-020-01855-9. 
  3. Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani SN, Dini L, Darvishzadeh-Mahani F, Ahmadi M. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn Biol Med. 2017;36(3):238-247. doi: 10.1080/15368378.2016.1251452. 
  4. Amr A. Abd-Elghany, Ebtesam A. Mohamad. Ex-vivo Transdermal delivery of Annona Squamosa Entrapped in Niosomes by Electroporation. Journal of Radiation Research and Applied Sciences 2020; 13 (1): 164–173. doi: 10.1080/16878507.2020.1719329.
  5. Ali FM, El-Gebaly RH, Hamad AM. Combination of bacteriolytic therapy with magnetic field for Ehrlich tumour treatment. Gen Physiol Biophys. 2017 Jul;36(3):259-271. doi: 10.4149/gpb_2016051. 
  6. Fadel MA, El-Gebaly RH, Aly AA, Ibrahim FF. Control of Ehrlich Tumor Growth by Electromagnetic Waves at Resonance Frequency (In Vivo Studies). Electromagnetic Biology and Medicine 2005;24(1):9-21. doi: 10.1081/JBC-200054263.
  7. Milgram J, Shahar R, Levin-Harrus T, Kass P. The effect of short, high intensity magnetic field pulses on the healing of skin wounds in rats. Bioelectromagnetics. 2004 May;25(4):271-7. doi: 10.1002/bem.10194. 
  8. Athanasiou A, Karkambounas S, Batistatou A, Lykoudis E, Katsaraki A, Kartsiouni T, Papalois A, Evangelou A. The effect of pulsed electromagnetic fields on secondary skin wound healing: an experimental study. Bioelectromagnetics. 2007 Jul;28(5):362-8. doi: 10.1002/bem.20303. 
  9. Ahmadian S, Zarchi SR, Bolouri B. Effects of extremely-low-frequency pulsed electromagnetic fields on collagen synthesis in rat skin. Biotechnol Appl Biochem. 2006 Feb;43(Pt 2):71-5. doi: 10.1042/BA20050086.
  10. Akpolat V, Celik MS, Celik Y, Akdeniz N, Ozerdem MS. Treatment of osteoporosis by long-term magnetic field with extremely low frequency in rats. Gynecol Endocrinol. 2009 Aug;25(8):524-9. doi: 10.1080/09513590902972075. 
  11. Ali FM, Elgebaly RH, Elneklawi MS, Othman AS. Role of duty cycle on Pseudomonas aeruginosa growth inhibition mechanisms by positive electric pulses. Biomed Mater Eng. 2016 Aug 12;27(2-3):211-25. doi: 10.3233/BME-161577.
  12. Fadel MA, Mohamed SA, Abdelbacki AM, El-Sharkawy AH. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency. J Appl Microbiol. 2014 Aug;117(2):358-65. doi: 10.1111/jam.12527.
  13. Fadel MA, El-Gebaly RH, Mohamed SA, Abdelbacki AMM. Biophysical control of the growth of Agrobacterium tumefaciens using extremely low frequency electromagnetic waves at resonance frequency. Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):365-371. doi: 10.1016/j.bbrc.2017.10.008.
  14. Cellini L, Grande R, Di Campli E, Di Bartolomeo S, Di Giulio M, Robuffo I, Trubiani O, Mariggiò MA. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics. 2008 May;29(4):302-11. doi: 10.1002/bem.20391. 
  15. Belyaev I. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells. Mutat Res. 2011 May 18;722(1):56-61. doi: 10.1016/j.mrgentox.2011.03.012. 
  16. Schopf JW. Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):869-85. doi: 10.1098/rstb.2006.1834. 
  17. Dixit Y, Wagle A, Vakil B. Patents in the Field of Probiotics, Prebiotics, Synbiotics: A Review. Journal of Food: Microbiology, Safety & Hygiene 2016; 01(02).
  18. Fuchs JG. Chapter 11. Interactions between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application. In: Insam H. et al., editors. Microbes at Work. Springer –Verlag Berlin Heidelberg. 2010;213-229.
  19. Köhler CD, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol. 2011 Dec;301(8):642-7. doi: 10.1016/j.ijmm.2011.09.006. 
  20. Subashchandrabose S, Mobley HLT. Virulence and Fitness Determinants of Uropathogenic Escherichia coli. Microbiol Spectr. 2015 Aug;3(4):10.1128/microbiolspec.UTI-0015-2012. doi: 10.1128/microbiolspec.UTI-0015-2012.
  21. Fakhouri F, Zuber J, Frémeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet. 2017 Aug 12;390(10095):681-696. doi: 10.1016/S0140-6736(17)30062-4. Epub 2017 Feb 25. Erratum in: Lancet. 2017 Aug 12;390(10095):648.
  22. Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 2001 Sep;60(3):831-46. doi: 10.1046/j.1523-1755.2001.060003831.x. 
  23. Goldwater PN, Bettelheim KA. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med. 2012 Feb 2;10:12. doi: 10.1186/1741-7015-10-12. 
  24. Hunt RW, Zavalin A, Bhatnagar A, Chinnasamy S, Das KC. Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications. Int J Mol Sci. 2009 Nov 20;10(10):4515-58. doi: 10.3390/ijms10104515. Erratum in: Int J Mol Sci. 2009 Nov;10(11):4719-22. 
  25. Cellini L, Grande R, Di Campli E, Di Bartolomeo S, Di Giulio M, Robuffo I, Trubiani O, Mariggiò MA. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics. 2008 May;29(4):302-11. doi: 10.1002/bem.20391. 
  26. Kohno M, Yamazaki M, Kimura I I, Wada M. Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. Pathophysiology. 2000 Jul;7(2):143-148. doi: 10.1016/s0928-4680(00)00042-0. 
  27. JORDEN J. Textbook of Diagnostic Microbiology: Edited by C.R. MAHON and G. MANUSELIA. 1995. ISBN 0-7216-4028-1. Philadelphia, Pa: WB Saunders; 1995. Journal of Medical Microbiology 1996;45(5):391-391.
  28. Demicheli MC, Goes AM, de Andrade AS. Ultrastructural changes in Paracoccidioides brasiliensis yeast cells attenuated by gamma irradiation. Mycoses. 2007 Sep;50(5):397-402. doi: 10.1111/j.1439-0507.2007.01389.x. 
  29. Leonard DA, Bonomo RA, Powers RA. Class D β-lactamases: a reappraisal after five decades. Acc Chem Res. 2013 Nov 19;46(11):2407-15. doi: 10.1021/ar300327a. 
  30. Mohammad EA, Elshemey WM, Elsayed AA, Abd-Elghany AA. Electroporation Parameters for Successful Transdermal Delivery of Insulin. Am J Ther. 2016 Nov/Dec;23(6):e1560-e1567. doi: 10.1097/MJT.0000000000000198.
  31. Batabyal B, Himanshu  Commonly Use of Oral Antibiotics Resistance in Children Aged 1 To 12 Years with UTIs an Increasing Problem. Int J Bacteriol Parasitol: 2018; IJBP-105. doi: 10.29011/ IJBP-105. 000005
  32. Abduzaimovic A, Aljicevic M, Rebic V, Vranic SM, Abduzaimovic K, Sestic S. Antibiotic Resistance in Urinary Isolates of Escherichia coli. Mater Sociomed. 2016 Dec;28(6):416-419. doi: 10.5455/msm.2016.28.416-419.
  33. Segatore B, Setacci D, Bennato F, Cardigno R, Amicosante G, Iorio R. Evaluations of the Effects of Extremely Low-Frequency Electromagnetic Fields on Growth and Antibiotic Susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol. 2012;2012:587293. doi: 10.1155/2012/587293. 
  34. Oncul S, Cuce EM, Aksu B, Inhan Garip A. Effect of extremely low frequency electromagnetic fields on bacterial membrane. Int J Radiat Biol. 2016;92(1):42-9. doi: 10.3109/09553002.2015.1101500. 

Download Article
Received February 17, 2022.
Accepted March 26, 2022.
©2022 International Medical Research and Development Corporation.