Detection of the blaVIM-2 Gene in Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates in Sudan

Salma Mohamed, Zainab Ahmed, Tajalseer Mubarak, Sara Mohamed, Hassan Higazi, Sara Alil

 
International Journal of Biomedicine. 2022;12(4):636-639.
DOI: 10.21103/Article12(4)_OA21
Originally published December 5, 2022

Abstract: 

Background: Acinetobacter baumannii is a pleomorphic aerobic Gram-negative bacillus that is notorious for having multidrug resistance traits. Carbapenem-resistant Acinetobacter baumannii (CRAB) is a global concern due to its ability to retain and disseminate resistance genes, which poses a threat to the spread of resistance among bacterial communities in hospital settings. The aim of our study was to evaluate the existence of the blaVIM-2 gene in carbapenem-resistant Acinetobacter baumannii clinical isolates from Sudanese hospitals.
Methods and Results: Forty clinical isolates of Acinetobacter baumannii were collected from June 2021 to April 2022. All isolates of Acinetobacter baumannii were identified via BioMérieux's Vitek-2 automated system (Marcy l'Étoile, France) and evaluated for phenotypic resistance to carbapenem, using imipenem and meropenem. The enzymatic mode of resistance was assessed by the Modified Hodge test (MHT). A real-time PCR was used to detect the presence of the blaVIM-2 gene.
Of 40 isolates, 32(80%) were resistant to imipenem, 4(10%) were moderately resistant, and 4(10%) were susceptible to imipenem; 24(60%) were resistant to meropenem, 10(25%) were moderately resistant, and 6(15%) were susceptible to meropenem. MHT was 70% positive with imipenem use and 55% positive with meropenem use. Real-time PCR revealed that only 30% of the samples were positive for the blaVIM-2 gene. All blaVIM-2-positive isolates were resistant to both imipenem and meropenem.
Conclusion: Resistance to carbapenem poses a serious threat, denying patients treatment options. It is essential to make continuous surveillance of these strains to prevent the development of resistant strains.

Keywords: 
carbapenem-resistant Acinetobacter baumann • blaVIM-2 gene• carbapenemases
References: 

1. Lin DL, Traglia GM, Baker R, Sherratt DJ, Ramirez MS, Tolmasky ME. Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Antibiotics (Basel). 2020 Jul 13;9(7):405. doi: 10.3390/antibiotics9070405.
2. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007 Jul;20(3):440-58, table of contents. doi: 10.1128/CMR.00001-07.
3. Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol. 2000 Oct;3(5):489-95. doi: 10.1016/s1369-5274(00)00128-4.
4. Speijer H, Savelkoul PH, Bonten MJ, Stobberingh EE, Tjhie JH. Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit. J Clin Microbiol. 1999 Nov;37(11):3654-61. doi: 10.1128/JCM.37.11.3654-3661.1999.
5. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999 Jul;43(7):1584-90. doi: 10.1128/AAC.43.7.1584.
6. Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Nordmann P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000 Apr;44(4):891-7. doi: 10.1128/AAC.44.4.891-897.2000.
7. Sacha P, Wieczorek P, Hauschild T, Zórawski M, Olszańska D, Tryniszewska E. Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol. 2008;46(2):137-42. doi: 10.2478/v10042-008-0020-9.
8. Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007 Dec 15;74(12):1686-701. doi: 10.1016/j.bcp.2007.05.021.
9. Santos C, Caetano T, Ferreira S, Mendo S. Tn5090-like class 1 integron carrying bla(VIM-2) in a Pseudomonas putida strain from Portugal. Clin Microbiol Infect. 2010 Oct;16(10):1558-61. doi: 10.1111/j.1469-0691.2010.03165.x.
10. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005 Apr;18(2):306-25. doi: 10.1128/CMR.18.2.306-325.2005.
11. Cardoso O, Leitão R, Figueiredo A, Sousa JC, Duarte A, Peixe LV. Metallo-beta-lactamase VIM-2 in clinical isolates of Pseudomonas aeruginosa from Portugal. Microb Drug Resist. 2002 Summer;8(2):93-7. doi: 10.1089/107662902760190635.
12. Cardoso O, Alves AF, Leitão R. Metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int J Antimicrob Agents. 2008 Apr;31(4):375-9. doi: 10.1016/j.ijantimicag.2007.12.006.
13. Bush K. Metallo-beta-lactamases: a class apart. Clin Infect Dis. 1998 Aug;27 Suppl 1:S48-53. doi: 10.1086/514922.
14. Edelstein MV, Skleenova EN, Shevchenko OV, D'souza JW, Tapalski DV, Azizov IS, Sukhorukova MV, Pavlukov RA, Kozlov RS, Toleman MA, Walsh TR. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis. 2013 Oct;13(10):867-76. doi: 10.1016/S1473-3099(13)70168-3.
15. Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-beta-lactamase, IMP-18. Antimicrob Agents Chemother. 2006 Jun;50(6):2272-3. doi: 10.1128/AAC.01440-05.
16. Dong N, Sun Q, Huang Y, Shu L, Ye L, Zhang R, Chen S. Evolution of Carbapenem-Resistant Serotype K1 Hypervirulent Klebsiella pneumoniae by Acquisition of blaVIM-1-Bearing Plasmid. Antimicrob Agents Chemother. 2019 Aug 23;63(9):e01056-19. doi: 10.1128/AAC.01056-19.
17. Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012 Apr;67(4):906-9. doi: 10.1093/jac/dkr563.
18. Mohamed SER, Alobied A, Hussien WM, Saeed MIJg. blaOXA-48 carbapenem resistant Pseudomonas aeruginosa clinical isolates in Sudan. Journal of Advances in Microbiology. 2018;10(4):1-5.
19. Mogasale VV, Saldanha P, Pai V, Rekha PD, Mogasale V. A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Sci Rep. 2021 Mar 4;11(1):5116. doi: 10.1038/s41598-021-84293-8.
20. Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front Microbiol. 2019 Jan 30;10:80. doi: 10.3389/fmicb.2019.00080.

Download Article
Received September 5, 2022.
Accepted October 4, 2022.
©2022 International Medical Research and Development Corporation.