Investigating the Role of Proximal Femoral Morphology in Noncontact ACL Injuries: A Comparative Study

Dijon Musliu, Jeton Shatri, Sadi Bexheti, Ardita Kafexholli, Redon Jashari, Agron Mahmuti, Lavdim Berisha, Ardian Karakushi, Qerim Kida

 
International Journal of Biomedicine. 2023;13(3):117-122.
DOI: 10.21103/Article13(3)_OA11
Originally published September 5, 2023

Abstract: 

Background: Non-contact anterior cruciate ligament (ACL) injury is a common and debilitating injury among athletes, with high recurrence rates and long-term consequences. Identifying individuals at risk of ACL injury can help prevent or reduce the severity of these injuries. The present study aimed to assess the alpha angle (AA) in ACL rupture patients in both the injured (ipsilateral) and non-affected (contralateral) extremities, compared to a control group.
Methods and Results: This case-control study included 105 subjects (78.1% male and 21.9% female) aged between 15 and 45 years of both sexes involved in sports. The case group consisted of 54 patients with sport-related, noncontact ACL ruptures identified by MRI. Fifty-one patients, 10(19.6%) of whom were female, with no ACL rupture, were included in the study as a control group. Hip radiographs were taken in all the subjects using the modified Dunn View with the patient in the supine position, hip flexed 45o and abducted 20o. OsiriX software was used to obtain the measurements. Most injuries were caused by football (58.1%), followed by jumping sports (23.8%) and skiing (18.1%).
The mean AA was 49.27 o (SD=4.93) for subjects without ACL rupture and 54.84o (SD=6.17) for subjects with ACL rupture, and the difference was statistically significant (P<0.001). Results also showed a statistically significant difference in the AA on the ipsilateral (54.84o [SD=6.17]) and contralateral (49.48o [SD=7.04]) hips of the case subjects (P<0.001). The logistic regression analysis indicated a statistically significant difference in AA between the case and control groups and between hips of the same subject with an OR of 1.12 (P=0.041) and 1.2 (P=0.000), respectively.
Conclusion: Alterations in proximal femur morphology should be considered a potential risk factor for ACL injury, and AA can be a significant predictor of ACL injury. We recommend that young athletes actively participating in sports have their hip AA measured so those with higher AA can follow special prevention programs.

References: 
  1. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. 2013 Feb;41(2):385-95. doi: 10.1177/0363546512465167.
  2. Lopes OV Jr, Tragnago G, Gatelli C, Costa RN, de Freitas Spinelli L, Saggin PRF, Kuhn A. Assessment of the alpha angle and mobility of the hip in patients with noncontact anterior cruciate ligament injury. Int Orthop. 2017 Aug;41(8):1601-1605. doi: 10.1007/s00264-017-3482-6.
  3. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003 Nov-Dec;31(6):831-42. doi: 10.1177/03635465030310061801.
  4. Webster KE, Feller JA. Exploring the High Reinjury Rate in Younger Patients Undergoing Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2016 Nov;44(11):2827-2832. doi: 10.1177/0363546516651845. 
  5. Schweizer N, Strutzenberger G, Franchi MV, Farshad M, Scherr J, Spörri J. Screening Tests for Assessing Athletes at Risk of ACL Injury or Reinjury-A Scoping Review. Int J Environ Res Public Health. 2022 Mar 1;19(5):2864. doi: 10.3390/ijerph19052864.
  6. Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2013 Mar;21(3):678-82. doi: 10.1007/s00167-012-2038-y.
  7. Tainaka K, Takizawa T, Kobayashi H, Umimura M. Limited hip rotation and non-contact anterior cruciate ligament injury: a case-control study. Knee. 2014 Jan;21(1):86-90. doi: 10.1016/j.knee.2013.07.006.
  8. Gomes JL, de Castro JV, Becker R. Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy. 2008 Sep;24(9):1034-7. doi: 10.1016/j.arthro.2008.05.012. 
  9. Trigg SD, Schroeder JD, Hulsopple C. Femoroacetabular Impingement Syndrome. Curr Sports Med Rep. 2020 Sep;19(9):360-366. doi: 10.1249/JSR.0000000000000748. 
  10. Amanatullah DF, Antkowiak T, Pillay K, Patel J, Refaat M, Toupadakis CA, Jamali AA. Femoroacetabular impingement: current concepts in diagnosis and treatment. Orthopedics. 2015 Mar;38(3):185-99. doi: 10.3928/01477447-20150305-07.
  11. Ellera Gomes JL, Palma HM, Ruthner R. Influence of hip restriction on noncontact ACL rerupture. Knee Surg Sports Traumatol Arthrosc. 2014 Jan;22(1):188-91. doi: 10.1007/s00167-012-2348-0.
  12. Philippon M, Dewing C, Briggs K, Steadman JR. Decreased femoral head-neck offset: a possible risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc. 2012 Dec;20(12):2585-9. doi: 10.1007/s00167-012-1881-1.
  13. Smith KM, Gerrie BJ, McCulloch PC, Lintner DM, Harris JD. Comparison of MRI, CT, Dunn 45° and Dunn 90° alpha angle measurements in femoroacetabular impingement. Hip Int. 2018 Jul;28(4):450-455. doi: 10.5301/hipint.5000602.
  14. Bagherifard A, Jabalameli M, Yahyazadeh H, Shafieesabet A, Gharanizadeh K, Jahansouz A, Khanlari P. Diminished femoral head-neck offset and the restricted hip range of motion suggesting a possible role in ACL injuries. Knee Surg Sports Traumatol Arthrosc. 2018 Feb;26(2):368-373. doi: 10.1007/s00167-017-4589-4.
  15. VandenBerg C, Crawford EA, Sibilsky Enselman E, Robbins CB, Wojtys EM, Bedi A. Restricted Hip Rotation Is Correlated With an Increased Risk for Anterior Cruciate Ligament Injury. Arthroscopy. 2017 Feb;33(2):317-325. doi: 10.1016/j.arthro.2016.08.014.
  16. Bedi A, Warren RF, Wojtys EM, Oh YK, Ashton-Miller JA, Oltean H, Kelly BT. Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc. 2016 Jun;24(6):2024-31. doi: 10.1007/s00167-014-3299-4. 
  17. Schaver AL, Grezda K, Willey MC, Westermann RW. Radiographic Cam Morphology of the Hip May Be Associated with ACL Injury of the Knee: A Case-Control Study. Arthrosc Sports Med Rehabil. 2021 Jun 24;3(4):e1165-e1170. doi: 10.1016/j.asmr.2021.05.004. 
  18. Fraitzl CR, Kappe T, Pennekamp F, Reichel H, Billich C. Femoral head-neck offset measurements in 339 subjects: distribution and implications for femoroacetabular impingement. Knee Surg Sports Traumatol Arthrosc. 2013 May;21(5):1212-7. doi: 10.1007/s00167-012-2042-2
  19. Shen L, Jin ZG, Dong QR, Li LB. Anatomical Risk Factors of Anterior Cruciate Ligament Injury. Chin Med J (Engl). 2018 Dec 20;131(24):2960-2967. doi: 10.4103/0366-6999.247207. 
  20. Barnum MS, Boyd ED, Vacek P, Slauterbeck JR, Beynnon BD. Association of Geometric Characteristics of Knee Anatomy (Alpha Angle and Intercondylar Notch Type) With Noncontact ACL Injury. Am J Sports Med. 2021 Aug;49(10):2624-2630. doi: 10.1177/03635465211023750.
  21. Li Z, Li C, Li L, Wang P. Correlation between notch width index assessed via magnetic resonance imaging and risk of anterior cruciate ligament injury: an updated meta-analysis. Surg Radiol Anat. 2020 Oct;42(10):1209-1217. doi: 10.1007/s00276-020-02496-6.
  22. Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ, Hashemi J, Beynnon BD. Relationship Between the Risk of Suffering a First-Time Noncontact ACL Injury and Geometry of the Femoral Notch and ACL: A Prospective Cohort Study With a Nested Case-Control Analysis. Am J Sports Med. 2014 Aug;42(8):1796-805. doi: 10.1177/0363546514534182. 
  23. Polamalu SK, Musahl V, Debski RE. Tibiofemoral bony morphology features associated with ACL injury and sex utilizing three-dimensional statistical shape modeling. J Orthop Res. 2022 Jan;40(1):87-94. doi: 10.1002/jor.24952. 
  24. Çimen K, Otağ İ, Oztemür Z. The relationship of distal femur and proximal tibia morphology with anterior cruciate ligament injuries. Surg Radiol Anat. 2023 Apr;45(4):495-501. doi: 10.1007/s00276-023-03097-9.
  25. Duparc F, Thomine JM, Simonet J, Biga N. Femoral and tibial bone torsions associated with medial femoro-tibial osteoarthritis. Index of cumulative torsions. Orthop Traumatol Surg Res. 2014 Feb;100(1):69-74. doi: 10.1016/j.otsr.2013.12.014.
  26. Meyer EG, Haut RC. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech. 2008 Dec 5;41(16):3377-83. doi: 10.1016/j.jbiomech.2008.09.023. 
  27. Alpay Y, Ezici A, Kurk MB, Ozyalvac ON, Akpinar E, Bayhan AI. Increased femoral anteversion related to infratrochanteric femoral torsion is associated with ACL rupture. Knee Surg Sports Traumatol Arthrosc. 2020 Aug;28(8):2567-2571. doi: 10.1007/s00167-020-05874-0.

Download Article
Received June 8, 2023.
Accepted July 27, 2023.
©2023 International Medical Research and Development Corporation.