Radiosensitization: Studies and Modern Approaches to Cellular Radiosensitivity

Juan C. Alamilla-Presuel

 
International Journal of Biomedicine. 2023;13(3):17-30.
DOI: 10.21103/Article13(3)_RA2
Originally published September 5, 2023

Abstract: 

Even though radiation therapy has achieved great success, there is still an unsolved task of increasing radiation damage to tumor tissue and reducing side effects on healthy tissues. There is a wide variety of obstacles that reduce the efficiency of radiotherapy. Mechanisms of radioresistance involve tumor-specific oncogenic signalling pathways, tumor metabolism and proliferation, tumor microenvironment/hypoxia, and genomics. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage. Several strategies have been used recently to develop highly effective radiosensitizers with low toxicity. In this review, we considered the use of radiosensitizers, including small molecules and nanomaterials, in various malignant tumors and the problems and prospects for their clinical use in cancer therapy.

Keywords: 
ionizing radiation • radiosensitizer • cellular radiosensitivity • tumor tissue • DNA damage
References: 
  1. Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. 2018 Jan;39(1):24-48. doi: 10.1016/j.tips.2017.11.003.
  2. Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res. 2021 Jun 21;40(1):197. doi: 10.1186/s13046-021-02000-x.
  3. Crabtree HG, Cramer W. The action of radium on cancer cells. II.—Some factors determining the susceptibility of cancer cells to radium. Proc R Soc Lond Ser B Contain Pap Biol Character. 1933;113(782):238–50. doi.org: 10.1098/rspb.1933.0044.
  4. GRAY LH, CONGER AD, EBERT M, HORNSEY S, SCOTT OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953 Dec;26(312):638-48. doi: 10.1259/0007-1285-26-312-638. 
  5. Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007 Jun;26(2):241-8. doi: 10.1007/s10555-007-9056-0.
  6. Rofstad EK, Gaustad JV, Egeland TA, Mathiesen B, Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer. 2010 Oct 1;127(7):1535-46. doi: 10.1002/ijc.25176. 
  7. Bhaskara VK, Mohanam I, Rao JS, Mohanam S. Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells. PLoS One. 2012;7(2):e30905. doi: 10.1371/journal.pone.0030905.
  8. Martinive P, Defresne F, Bouzin C, Saliez J, Lair F, Grégoire V, et al. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res. 2006 Dec 15;66(24):11736-44. doi: 10.1158/0008-5472.CAN-06-2056.
  9. Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-Induced Resistance to Chemotherapy in Cancer. Adv Exp Med Biol. 2019;1136:123-139. doi: 10.1007/978-3-030-12734-3_9. 
  10. Adams GE. Chemical radiosensitization of hypoxic cells. Br Med Bull. 1973 Jan;29(1):48-53. doi: 10.1093/oxfordjournals.bmb.a070956.
  11. Proverbs-Singh T, Feldman JL, Morris MJ, Autio KA, Traina TA. Targeting the androgen receptor in prostate and breast cancer: several new agents in development. Endocr Relat Cancer. 2015 Jun;22(3):R87-R106. doi: 10.1530/ERC-14-0543.
  12. Michmerhuizen AR, Chandler B, Olsen E, Wilder-Romans K, Moubadder L, Liu M, et al. C. Seviteronel, a Novel CYP17 Lyase Inhibitor and Androgen Receptor Antagonist, Radiosensitizes AR-Positive Triple Negative Breast Cancer Cells. Front Endocrinol (Lausanne). 2020 Feb 11;11:35. doi: 10.3389/fendo.2020.00035.
  13. Kang HC, Chie EK, Kim HJ, Kim JH, Kim IH, Kim K, et al. A phthalimidoalkanamide derived novel DNMT inhibitor enhanced radiosensitivity of A549 cells by inhibition of homologous recombination of DNA damage. Invest New Drugs. 2019 Dec;37(6):1158-1165. doi: 10.1007/s10637-019-00730-6.
  14. Laird JH, Lok BH, Ma J, Bell A, de Stanchina E, Poirier JT, Rudin CM. Talazoparib Is a Potent Radiosensitizer in Small Cell Lung Cancer Cell Lines and Xenografts. Clin Cancer Res. 2018 Oct 15;24(20):5143-5152. doi: 10.1158/1078-0432.CCR-18-0401. 
  15. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008 Mar;8(3):193-204. doi: 10.1038/nrc2342. 
  16. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012 Jan 18;481(7381):287-94. doi: 10.1038/nature10760.
  17. Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, et al. M. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol. 2012 Mar 4;19(4):417-23. doi: 10.1038/nsmb.2258. 
  18. Hastak K, Bhutra S, Parry R, Ford JM. Poly (ADP-ribose) polymerase inhibitor, an effective radiosensitizer in lung and pancreatic cancers. Oncotarget. 2017 Apr 18;8(16):26344-26355. doi: 10.18632/oncotarget.15464. 
  19. Buckley AM, Dunne MR, Lynam-Lennon N, Kennedy SA, Cannon A, Reynolds AL, et al. Pyrazinib (P3), [(E)-2-(2-Pyrazin-2-yl-vinyl)-phenol], a small molecule pyrazine compound enhances radiosensitivity in oesophageal adenocarcinoma. Cancer Lett. 2019 Apr 10;447:115-129. doi: 10.1016/j.canlet.2019.01.009.
  20. Tang Q, Wu L, Xu M, Yan D, Shao J, Yan S. Osalmid, a Novel Identified RRM2 Inhibitor, Enhances Radiosensitivity of Esophageal Cancer. Int J Radiat Oncol Biol Phys. 2020 Dec 1;108(5):1368-1379. doi: 10.1016/j.ijrobp.2020.07.2322. 
  21. Lian X, Zhu C, Lin H, Gao Z, Li G, Zhang N, et al. Radiosensitization of HER2-positive esophageal cancer cells by pyrotinib. Biosci Rep. 2020 Feb 28;40(2):BSR20194167. doi: 10.1042/BSR20194167. 
  22. Qian X, Tan C, Yang B, Wang F, Ge Y, Guan Z, Cai J. Astaxanthin increases radiosensitivity in esophageal squamous cell carcinoma through inducing apoptosis and G2/M arrest. Dis Esophagus. 2017 Jun 1;30(6):1-7. doi: 10.1093/dote/dox027. 
  23. Ding YQ, Zhu HC, Chen XC, Sun XC, Yang X, Qin Q, et al. Sunitinib modulates the radiosensitivity of esophageal squamous cell carcinoma cells in vitro. Dis Esophagus. 2016 Nov;29(8):1144-1151. doi: 10.1111/dote.12440.
  24. Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry. 2021 Jun 1;60(21):1630-1641. doi: 10.1021/acs.biochem.1c00240.
  25. Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res. 2009 Feb;37(3):738-48. doi: 10.1093/nar/gkn937.
  26. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010 May 28;17(5):421-33. doi: 10.1016/j.chembiol.2010.04.012.
  27. Pendleton M, Lindsey RH Jr, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci. 2014 Mar;1310(1):98-110. doi: 10.1111/nyas.12358.
  28. Tang Q, Ma J, Sun J, Yang L, Yang F, Zhang W, Li R, Wang L, Wang Y, Wang H. Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep. 2018 Aug;40(2):579-588. doi: 10.3892/or.2018.6468. 
  29. Skwarska A, Ramachandran S, Dobrynin G, Leszczynska KB, Hammond EM. The imidazoacridinone C-1311 induces p53-dependent senescence or p53-independent apoptosis and sensitizes cancer cells to radiation. Oncotarget. 2017 May 9;8(19):31187-31198. doi: 10.18632/oncotarget.16102. 
  30. Cammarota F, Conte A, Aversano A, Muto P, Ametrano G, Riccio P, et al. Lithium chloride increases sensitivity to photon irradiation treatment in primary mesenchymal colon cancer cells. Mol Med Rep. 2020 Mar;21(3):1501-1508. doi: 10.3892/mmr.2020.10956. 
  31. Pal I, Dey KK, Chaurasia M, Parida S, Das S, Rajesh Y, et al. Cooperative effect of BI-69A11 and celecoxib enhances radiosensitization by modulating DNA damage repair in colon carcinoma. Tumour Biol. 2016 May;37(5):6389-402. doi: 10.1007/s13277-015-4399-6. 
  32. Pascual-Serra R, Fernández-Aroca DM, Sabater S, Roche O, Andrés I, Ortega-Muelas M, et al. p38β (MAPK11) mediates gemcitabine-associated radiosensitivity in sarcoma experimental models. Radiother Oncol. 2021 Mar;156:136-144. doi: 10.1016/j.radonc.2020.12.008. 
  33. Waissi W, Nicol A, Jung M, Rousseau M, Jarnet D, Noel G, et al. Radiosensitizing Pancreatic Cancer with PARP Inhibitor and Gemcitabine: An In Vivo and a Whole-Transcriptome Analysis after Proton or Photon Irradiation. Cancers (Basel). 2021 Jan 30;13(3):527. doi: 10.3390/cancers13030527.
  34. Vance S, Liu E, Zhao L, Parsels JD, Parsels LA, Brown JL, et al. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1. Cell Cycle. 2011 Dec 15;10(24):4321-9. doi: 10.4161/cc.10.24.18661.
  35. Zhang Y, Zuo Y, Guan Z, Lu W, Xu Z, Zhang H, et al. Salinomycin radiosensitizes human nasopharyngeal carcinoma cell line CNE-2 to radiation. Tumour Biol. 2016 Jan;37(1):305-11. doi: 10.1007/s13277-015-3730-6. 
  36. Geng CX, Zeng ZC, Wang JY, Xuan SY, Lin CM. Docetaxel shows radiosensitization in human hepatocellular carcinoma cells. World J Gastroenterol. 2005 May 21;11(19):2990-3. doi: 10.3748/wjg.v11.i19.2990. 
  37. Lee IJ, Seong J. Radiosensitizers in hepatocellular carcinoma. Semin Radiat Oncol. 2011 Oct;21(4):303-11. doi: 10.1016/j.semradonc.2011.05.008. 
  38. Nath M, Mridula, Kumari R. Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity. J Photochem Photobiol B. 2017 Sep;174:182-194. doi: 10.1016/j.jphotobiol.2017.07.017. 
  39. Liu HM, Wu Q, Cao JQ, Wang X, Song Y, Mei WJ, Wang XC. A phenanthroline derivative enhances radiosensitivity of hepatocellular carcinoma cells by inducing mitochondria-dependent apoptosis. Eur J Pharmacol. 2019 Jan 15;843:285-291. doi: 10.1016/j.ejphar.2018.10.031.
  40. Zhang XH, Cao MQ, Li XX, Zhang T. Apatinib as an alternative therapy for advanced hepatocellular carcinoma. World J Hepatol. 2020 Oct 27;12(10):766-774. doi: 10.4254/wjh.v12.i10.766. 
  41. Yang C, Qin S. Apatinib targets both tumor and endothelial cells in hepatocellular carcinoma. Cancer Med. 2018 Sep;7(9):4570-4583. doi: 10.1002/cam4.1664.
  42. Zhang H, Cao Y, Chen Y, Li G, Yu H. Apatinib promotes apoptosis of the SMMC-7721 hepatocellular carcinoma cell line via the PI3K/Akt pathway. Oncol Lett. 2018 Apr;15(4):5739-5743. doi: 10.3892/ol.2018.8031.
  43. Liao J, Jin H, Li S, Xu L, Peng Z, Wei G, et al. Apatinib potentiates irradiation effect via suppressing PI3K/AKT signaling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019 Nov 6;38(1):454. doi: 10.1186/s13046-019-1419-1.
  44. Göttgens EL, Bussink J, Leszczynska KB, Peters H, Span PN, Hammond EM. Inhibition of CDK4/CDK6 Enhances Radiosensitivity of HPV Negative Head and Neck Squamous Cell Carcinomas. Int J Radiat Oncol Biol Phys. 2019 Nov 1;105(3):548-558. doi: 10.1016/j.ijrobp.2019.06.2531. 
  45. Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer. 2013 Mar 5;108(4):748-54. doi: 10.1038/bjc.2013.21.
  46. Tsai YC, Wang TY, Hsu CL, Lin WC, Chen JY, Li JH, et al. Selective inhibition of HDAC6 promotes bladder cancer radiosensitization and mitigates the radiation-induced CXCL1 signalling. Br J Cancer. 2023 May;128(9):1753-1764. doi: 10.1038/s41416-023-02195-0.
  47. Paillas S, Then CK, Kilgas S, Ruan JL, Thompson J, Elliott A, Smart S, Kiltie AE. The Histone Deacetylase Inhibitor Romidepsin Spares Normal Tissues While Acting as an Effective Radiosensitizer in Bladder Tumors in Vivo. Int J Radiat Oncol Biol Phys. 2020 May 1;107(1):212-221. doi: 10.1016/j.ijrobp.2020.01.015. 
  48. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012 Apr 26;12(6):401-10. doi: 10.1038/nrc3262.
  49. Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 2011 Jul 15;25(14):1510-27. doi: 10.1101/gad.2051011. 
  50. Schleicher SM, Moretti L, Varki V, Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches. Drug Resist Updat. 2010 Jun;13(3):79-86. doi: 10.1016/j.drup.2010.04.002. 
  51. Wang F, Tang J, Li P, Si S, Yu H, Yang X, et al. Chloroquine Enhances the Radiosensitivity of Bladder Cancer Cells by Inhibiting Autophagy and Activating Apoptosis. Cell Physiol Biochem. 2018;45(1):54-66. doi: 10.1159/000486222.
  52. Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018 Feb 12;8(7):1824-1849. doi: 10.7150/thno.22172.
  53. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold Nanoparticles for Photothermal Cancer Therapy. Front Chem. 2019 Apr 5;7:167. doi: 10.3389/fchem.2019.00167.
  54. Lu VM, McDonald KL, Townley HE. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine (Lond). 2017 Oct;12(19):2389-2401. doi: 10.2217/nnm-2017-0193.
  55. Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C. Enhancement of radiation effect by heavy elements. Mutat Res. 2010 Apr-Jun;704(1-3):123-31. doi: 10.1016/j.mrrev.2010.01.002.
  56. Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, et al. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys Med. 2016 Nov;32(11):1444-1452. doi: 10.1016/j.ejmp.2016.10.015. 
  57. Saberi A, Shahbazi-Gahrouei D, Abbasian M, Fesharaki M, Baharlouei A, Arab-Bafrani Z. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells. Int J Radiat Biol. 2017 Mar;93(3):315-323. doi: 10.1080/09553002.2017.1242816.
  58. Habiba K, Aziz K, Sanders K, Santiago CM, Mahadevan LSK, Makarov V, et al. Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers. Sci Rep. 2019 Nov 19;9(1):17120. doi: 10.1038/s41598-019-53706-0. 
  59. Mirjolet C, Boudon J, Loiseau A, Chevrier S, Boidot R, Oudot A, et al. Docetaxel-titanate nanotubes enhance radiosensitivity in an androgen-independent prostate cancer model. Int J Nanomedicine. 2017 Aug 30;12:6357-6364. doi: 10.2147/IJN.S139167.
  60. Lavanya V, Adil M, Ahmed N, Rishi AK, Jamal S. Small molecule inhibitors as emerging cancer therapeutics. Integr Cancer Sci Ther. 2014;1:39–46. doi: 10.15761/ICST.1000109.
  61. Balakrishnan L, Bambara RA. Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603.
  62. Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res. 2011 Feb;39(3):781-94. doi: 10.1093/nar/gkq884.
  63. Shen B, Singh P, Liu R, Qiu J, Zheng L, Finger LD, Alas S. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays. 2005 Jul;27(7):717-29. doi: 10.1002/bies.20255. 
  64. Liu S, Lu G, Ali S, Liu W, Zheng L, Dai H, et al. Okazaki fragment maturation involves α-segment error editing by the mammalian FEN1/MutSα functional complex. EMBO J. 2015 Jul 2;34(13):1829-43. doi: 10.15252/embj.201489865.
  65. He L, Zhang Y, Sun H, Jiang F, Yang H, Wu H, et al. Targeting DNA Flap Endonuclease 1 to Impede Breast Cancer Progression. EBioMedicine. 2016 Dec;14:32-43. doi: 10.1016/j.ebiom.2016.11.012. 
  66. Zou J, Zhu L, Jiang X, Wang Y, Wang Y, Wang X, Chen B. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget. 2018 Jan 10;9(13):11268-11278. doi: 10.18632/oncotarget.24109. 
  67. Li JL, Wang JP, Chang H, Deng SM, Du JH, Wang XX, et al. FEN1 inhibitor increases sensitivity of radiotherapy in cervical cancer cells. Cancer Med. 2019 Dec;8(18):7774-7780. doi: 10.1002/cam4.2615. 
  68. Baek SJ, Ishii H, Tamari K, Hayashi K, Nishida N, Konno M, et al. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review). Oncol Rep. 2015 Nov;34(5):2233-7. doi: 10.3892/or.2015.4236. 
  69. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15524-9. doi: 10.1073/pnas.242606799.
  70. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature. 2005 Jun 9;435(7043):828-33. doi: 10.1038/nature03552. 
  71. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007 Oct 11;449(7163):682-8. doi: 10.1038/nature06174. Epub 2007 Sep 26. Erratum in: Nature. 2008 Sep 11;455(7210):256. 
  72. Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG, Chen D, Sun Y, You MJ, Liu Y, Dean DC, Woodward WA, Liang H, Yang X, Lopez-Berestein G, Sood AK, Hu Y, Ang KK, Chen J, Ma L. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014 Dec 5;5:5671. doi: 10.1038/ncomms6671.
  73. Huang F, Tang J, Zhuang X, Zhuang Y, Cheng W, Chen W, Yao H, Zhang S. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One. 2014 Feb 4;9(2):e87897. doi: 10.1371/journal.pone.0087897. 
  74. Baek SJ, Sato K, Nishida N, Koseki J, Azuma R, Kawamoto K, Konno M, Hayashi K, Satoh T, Doki Y, Mori M, Ishii H, Ogawa K. MicroRNA miR-374, a potential radiosensitizer for carbon ion beam radiotherapy. Oncol Rep. 2016 Nov;36(5):2946-2950. doi: 10.3892/or.2016.5122. 
  75. Qi T, Dong Y, Gao Z, Xu J. Research Progress on the Anti-Cancer Molecular Mechanisms of Huaier. Onco Targets Ther. 2020 Dec 8;13:12587-12599. doi: 10.2147/OTT.S281328.
  76. Ding X, Yang Q, Kong X, Haffty BG, Gao S, Moran MS. Radiosensitization effect of Huaier on breast cancer cells. Oncol Rep. 2016 May;35(5):2843-50. doi: 10.3892/or.2016.4630.
  77. Su YJ, Huang SY, Ni YH, Liao KF, Chiu SC. Anti-Tumor and Radiosensitization Effects of N-Butylidenephthalide on Human Breast Cancer Cells. Molecules. 2018 Jan 25;23(2):240. doi: 10.3390/molecules23020240. 
  78. Zhang D, Dong Y, Zhao Y, Zhou C, Qian Y, Hegde ML, Wang H, Han S. Sinomenine hydrochloride sensitizes cervical cancer cells to ionizing radiation by impairing DNA damage response. Oncol Rep. 2018 Nov;40(5):2886-2895. doi: 10.3892/or.2018.6693.
  79. Zhang F, Fan B, Mao L. Radiosensitizing effects of Cyclocarya paliurus polysaccharide on hypoxic A549 and H520 human non-small cell lung carcinoma cells. Int J Mol Med. 2019 Oct;44(4):1233-1242. doi: 10.3892/ijmm.2019.4289.
  80.  Xie JH, Xie MY, Nie SP, Shen MY, Wang YX and Li C. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem. 2010;119:1626–1632.
  81. Xie JH, Liu X, Shen MY, Nie SP, Zhang H, Li C, Gong DM, Xie MY. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chem. 2013 Feb 15;136(3-4):1453-60. doi: 10.1016/j.foodchem.2012.09.078. 
  82. Li S, Li J, Guan XL, Li J, Deng SP, Li LQ, Tang MT, Huang JG, Chen ZZ, Yang RY. Hypoglycemic effects and constituents of the barks of Cyclocarya paliurus and their inhibiting activities to glucosidase and glycogen phosphorylase. Fitoterapia. 2011 Oct;82(7):1081-5. doi: 10.1016/j.fitote.2011.07.002. 
  83. Sliva D. Medicinal mushroom Phellinus linteus as an alternative cancer therapy. Exp Ther Med. 2010 May;1(3):407-411. doi: 10.3892/etm_00000063. 
  84. Li YG, Ji DF, Zhong S, Liu PG, Lv ZQ, Zhu JX, Chen JE, Chen HP. Polysaccharide from Phellinus linteus induces S-phase arrest in HepG2 cells by decreasing calreticulin expression and activating the P27kip1-cyclin A/D1/E-CDK2 pathway. J Ethnopharmacol. 2013 Oct 28;150(1):187-95. doi: 10.1016/j.jep.2013.08.028.
  85. Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym. 2012 Nov 6;90(4):1395-410. doi: 10.1016/j.carbpol.2012.07.026. 
  86. Park BJ, Lim YS, Lee HJ, Eum WS, Park J, Han KH, Choi SY, Lee KS. Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage. BMB Rep. 2009 Aug 31;42(8):500-5. doi: 10.5483/bmbrep.2009.42.8.500.
  87. Kim BC, Jeon WK, Hong HY, Jeon KB, Hahn JH, Kim YM, Numazawa S, Yosida T, Park EH, Lim CJ. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J Ethnopharmacol. 2007 Sep 5;113(2):240-7. doi: 10.1016/j.jep.2007.05.032.
  88. Zhao C, Liao Z, Wu X, Liu Y, Liu X, Lin Z, Huang Y, Liu B. Isolation, purification, and structural features of a polysaccharide from Phellinus linteus and its hypoglycemic effect in alloxan-induced diabetic mice. J Food Sci. 2014 May;79(5):H1002-10. doi: 10.1111/1750-3841.12464. 
  89. Wang H, Wu G, Park HJ, Jiang PP, Sit WH, van Griensven LJ, Wan JM. Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: a proteomics analysis. Chin Med. 2012 Oct 18;7(1):23. doi: 10.1186/1749-8546-7-23.
  90. Jeong YK, Oh JY, Yoo JK, Lim SH, Kim EH. The Biofunctional Effects of Mesima as a Radiosensitizer for Hepatocellular Carcinoma. Int J Mol Sci. 2020 Jan 29;21(3):871. doi: 10.3390/ijms21030871.
  91. Yan Y, Su W, Zeng S, Qian L, Chen X, Wei J, Chen N, Gong Z, Xu Z. Effect and Mechanism of Tanshinone I on the Radiosensitivity of Lung Cancer Cells. Mol Pharm. 2018 Nov 5;15(11):4843-4853. doi: 10.1021/acs.molpharmaceut.8b00489.
  92. Kuo WT, Tsai YC, Wu HC, Ho YJ, Chen YS, Yao CH, Yao CH. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep. 2015 Nov;34(5):2351-6. doi: 10.3892/or.2015.4204.
  93. Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol. 2016 Oct;82(4):943-56. doi: 10.1111/bcp.13021. 
  94. Mayer IA, Arteaga CL. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu Rev Med. 2016;67:11-28. doi: 10.1146/annurev-med-062913-051343. 
  95. Xu Z, Yan Y, Xiao L, Dai S, Zeng S, Qian L, Wang L, Yang X, Xiao Y, Gong Z. Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS One. 2017 Apr 17;12(4):e0175977. doi: 10.1371/journal.pone.0175977. 
  96. Stritzelberger J, Lainer J, Gollwitzer S, Graf W, Jost T, Lang JD, Mueller TM, Schwab S, Fietkau R, Hamer HM, Distel L. Ex vivo radiosensitivity is increased in non-cancer patients taking valproate. BMC Neurol. 2020 Oct 24;20(1):390. doi: 10.1186/s12883-020-01966-z.
  97. Zhou W, Guo Y, Zhang X, Jiang Z. Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma. J Cell Biochem. 2020 Feb;121(2):2027-2037. doi: 10.1002/jcb.29437. 
  98. Neckers L. Heat shock protein 90: the cancer chaperone. J Biosci. 2007 Apr;32(3):517-30. doi: 10.1007/s12038-007-0051-y. 
  99. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for cancer therapy. Br J Cancer. 2009 May 19;100(10):1523-9. doi: 10.1038/sj.bjc.6605066
  100. Bull EE, Dote H, Brady KJ, Burgan WE, Carter DJ, Cerra MA, Oswald KA, Hollingshead MG, Camphausen K, Tofilon PJ. Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin Cancer Res. 2004 Dec 1;10(23):8077-84. doi: 10.1158/1078-0432.CCR-04-1212. 
  101. Dote H, Burgan WE, Camphausen K, Tofilon PJ. Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res. 2006 Sep 15;66(18):9211-20. doi: 10.1158/0008-5472.CAN-06-2181. 
  102. Stingl L, Stühmer T, Chatterjee M, Jensen MR, Flentje M, Djuzenova CS. Novel HSP90 inhibitors, NVP-AUY922 and NVP-BEP800, radiosensitise tumour cells through cell-cycle impairment, increased DNA damage and repair protraction. Br J Cancer. 2010 May 25;102(11):1578-91. doi: 10.1038/sj.bjc.6605683. 
  103. Djuzenova CS, Blassl C, Roloff K, Kuger S, Katzer A, Niewidok N, Günther N, Polat B, Sukhorukov VL, Flentje M. Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of tumor cell lines under hypoxia. Cancer Biol Ther. 2012 Apr;13(6):425-34. doi: 10.4161/cbt.19294.
  104. Kudryavtsev VA, Khokhlova AV, Mosina VA, Selivanova EI, Kabakov AE. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: A predictive marker and promising target for radiosensitization. PLoS One. 2017 Mar 14;12(3):e0173640. doi: 10.1371/journal.pone.0173640. 
  105. Zhao M, Gu L, Li Y, Chen S, You J, Fan L, Wang Y, Zhao L. Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways. Carbohydr Polym. 2019 Nov 15;224:115171. doi: 10.1016/j.carbpol.2019.115171. 
  106. Kim EK, Je JY, Lee SJ, Kim YS, Hwang JW, Sung SH, Moon SH, Jeon BT, Kim SK, Jeon YJ, Park PJ. Chitooligosaccharides induce apoptosis in human myeloid leukemia HL-60 cells. Bioorg Med Chem Lett. 2012 Oct 1;22(19):6136-8. doi: 10.1016/j.bmcl.2012.08.030.
  107. Luo Z, Dong X, Ke Q, Duan Q, Shen L. Downregulation of CD147 by chitooligosaccharide inhibits MMP-2 expression and suppresses the metastatic potential of human gastric cancer. Oncol Lett. 2014 Jul;8(1):361-366. doi: 10.3892/ol.2014.2115.
  108. Vo TS, Ngo DH, Kim SK. Gallic acid-grafted chitooligosaccharides suppress antigen-induced allergic reactions in RBL-2H3 mast cells. Eur J Pharm Sci. 2012 Sep 29;47(2):527-33. doi: 10.1016/j.ejps.2012.07.010. 
  109. Han FS, Yang SJ, Lin MB, Chen YQ, Yang P, Xu JM. Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World J Gastroenterol. 2016 Jun 14;22(22):5193-200. doi: 10.3748/wjg.v22.i22.5193.
  110. Liu Q, Wang M, Kern AM, Khaled S, Han J, Yeap BY, Hong TS, Settleman J, Benes CH, Held KD, Efstathiou JA, Willers H. Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers. Mol Cancer Res. 2015 Apr;13(4):713-20. doi: 10.1158/1541-7786.MCR-14-0570. 
  111. Storch K, Cordes N. The impact of CDK9 on radiosensitivity, DNA damage repair and cell cycling of HNSCC cancer cells. Int J Oncol. 2016 Jan;48(1):191-8. doi: 10.3892/ijo.2015.3246.
  112. Xu T, Ma M, Chi Z, Si L, Sheng X, Cui C, Dai J, Yu S, Yan J, Yu H, Wu X, Tang H, Yu J, Kong Y, Guo J. High G2 and S-phase expressed 1 expression promotes acral melanoma progression and correlates with poor clinical prognosis. Cancer Sci. 2018 Jun;109(6):1787-1798. doi: 10.1111/cas.13607. 
  113. Lei X, Du L, Zhang P, Ma N, Liang Y, Han Y, Qu B. Knockdown GTSE1 enhances radiosensitivity in non-small-cell lung cancer through DNA damage repair pathway. J Cell Mol Med. 2020 May;24(9):5162-5167. doi: 10.1111/jcmm.15165.

Download Article
Received June 16, 2023.
Accepted July 26, 2023.
©2023 International Medical Research and Development Corporation.