Cell Respiration of Rat Cardiomyocytes and Soleus Muscle Fibers under Ultra-Short-Term Antiorthostatic Suspension

Irina V. Ogneva, PhD, ScD*; Nikolay S. Biryukov, MSc; Oxana M. Veselova, PhD; Irina M. Larina, MD, ScD

SSC RF Institute of Biomedical Problems of RAS; Moscow, Russian Federation

*Corresponding author: Prof. Irina V. Ogneva, PhD, ScD; SSC RF Institute of Biomedical Problems of RAS. Moscow, Russian Federation. E-mail: iogneva@yandex.ru

Published: September 20, 2014. 


The aim of the study was to analyses rat soleus fibers and left ventricle (LV) cardiomyocyte cell respiration after 6, 12, 18, 24 and 72 hours of antiorthostatic suspension by the tail. We measured V0 – basal oxygen consumption rate, V Glu+Mal – respiration velocity over a catalyst of malate and glutamate (5 mM glutamate + 2 mM malate) and Vmax – maximal respiratory rate (in the presence of 1 mM ADP) using the Saks polarography technique. We also determined the cytochrome c content and expression of its gene (Cycs) and the GAPDH gene using Western blotting and real-time PCR.

Cell respiration parameters in cardiomyocytes increased after 18 hours of suspension: V0 increased by 35%, VGlu+Mal by 90% and Vmax by 85% in comparison with the control group (p<0.05). Cytochrome c content in a mix of the membrane and mitochondrial fractions grew by 34.6% (p<0.05) compared to control after 18 hours. However, Cycs and Gapdh expression rates remained stable. Protein content increase in this case may result from increased translation efficiency and/or a reduction in the level of proteolysis.

Intensity of soleus fiber cell respiration decreased after 72 hours of suspension, V0 decreased by 76%, VGlu+Mal by 59% and Vmax by 53% compared to controls (p<0.05). Cytochrome c content fell after 24 hours of suspension by 15.7% (p<0.05) and by 57.9% (p<0.05) after 72 hours relative to controls. At the same time, Cycs mRNA content decreased after 6 hours of unloading by 23% (p<0.05) and continued to decrease to 59% (p<0.05) of the control level after 72 hours.

cytochrome c; microgravity; skeletal muscle; myocardium.
  1. Caiozzo VJ, Haddad F, Baker MJ, Herrick RE, Prietto N, Baldwin KM. Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81: 123–132, 1996.
  2. Booth FW, Kelso JR. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Arch 342: 231–238, 1973.
  3. Thornton WE, Moore TP, Pool SL. Fluid shifts in weightlessness. Aviat Space Environ Med 58: A86–A90, 1987.
  4. Watenpaugh DE, Hargens AR. The cardiovascular system in microgravity. In: Handbook of Physiology. Environmental Physiology, Am Physiol Soc, 4(vol. I, pt. 3, chapt. 29): 631–674, 1996.
  5. Nixon JV, Murray RG, Bryant C, Johnson RL Jr., Mitchell JR, Holland OB, et al. Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol 46: 541–548, 1979.
  6. Bungo MW, Goldwater DJ, Popp RL, Sandler H. Echocardiographic evaluation of space shuttle crewmembers. J Appl Physiol 62: 278–283, 1987.
  7. Charles JB, Lathers CM. Cardiovascular adaptation to spaceflight. J Clin Pharmacol 31: 1010–1023, 1991.
  8. Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH. Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J Appl Physiol 88: 473–478, 2000.
  9. Baldwin KM, Herrick RE, McCue SA. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. J Appl Physiol 75: 2466–2470, 1993.
  10. Riley DA, Ellis S, Slocum GR, Satyanarayana T, Bain JL, Sedlak FR. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles. Muscle Nerve 10: 560–568, 1987.
  11. Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, et al. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol 516: 915–930, 1999.
  12. Yajid F, Mercier JG, Mercier BM, Dubouchaud H, Prefaut С.  Effects of 4 wk of hindlimb suspension on skeletal muscle mitochondrial respiration in rats. J Appl Physiol 84: 479–485, 1998.
  13. Ogneva IV, Mirzoev TM, Biryukov NS, Veselova OM, Larina IM. Structure and functional characteristics of rat’s left ventricle cardiomyocytes under antiorthostatic suspension of various duration and subsequent reloading. J Biomed Biotechnol 2012 (Article ID 659869): 11 pages, 2012.
  14. Chi MM, Choksi R, Nemeth P, Krasnov I, Ilyina-Kakueva E, Manchester JK, et al.. Effects of microgravity and tail suspension on enzymes of individual soleus and tibialis anterior fibers. J Appl Physiol 73: 66–73, 1992.
  15. Ohira Y, Jiang B, Roy RR, Oganov V, Ilyina-Kakueva E, Marini JF, et al.   Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J Appl Physiol 73: 51–57, 1992.
  16. Bigard A-X, Boehm E, Veksler V, Mateo P, Anflous K, Ventura-Clapier R. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure. J Mol Cell Cardiol 30: 2391–2401, 1998.
  17. Ohira Y, Yasui W, Kariya F, Wakatsuki T, Nakamura K, Asakura T, et al. Metabolic adaptation of skeletal muscles to gravitational unloading.  Acta Astronaut 33: 113–117, 1994.
  18. Oishi Y, Ogata T, Yamamoto KI, Terada M, Ohira T, Ohira Y, et al..  Cellular adaptations in soleus muscle during recovery after hindlimb unloading. Acta Physiol 192(3): 381–395, 2008.
  19. Hargens AR, Steakai J, Johansson C, Tipton CM. Tissue fluid shift, forelimb loading, and tail tension in tailsuspended rats. Physiologist 27: S37–S38, 1984.
  20. Musacchia XJ, Deavers DR, Meininger GA. Fluid/electrolyte balance and cardiovascular responses: head-down tilted rats. Physiologist 33: S46–S47, 1990.
  21. McDonald KS, Delp MD, Fitts RH. Effect of hindlimb unweighting on tissue blood flow in the rat. J Appl Physiol 72: 2210–2218, 1992.
  22. Shellock FG, Swan HJ, and Rubin SA. Early central venous pressure changes in the rat during two different levels of headdown suspension. Aviat Space Environ Med 56: 791–795, 1985.
  23. Halet G, Viard P, Morel J-L, Mironneau J, Mironneau Ch. Effects of hindlimb suspension on cytosolic Ca21 and [3H]ryanodine binding in cardiac myocytes. Am J Physiol  (Heart Circ Physiol  45) 276: H1131–H1136, 1999.
  24. Yin W, Liu J-C, Fan R, Sun X-Q, Ma J, Feng N, et al. Modulation of beta-adrenoceptor signaling in the hearts of 4-wk simulated weightlessness rats. J Appl Physiol 105: 569 –574, 2008. 
  25. Cui Y, Zhang S-M, Zhang Q-Y, Fan R, Li J, Guo H-T, et al. Modulation of intracellular calcium transient in response to beta-adrenoceptor stimulation in the hearts of 4-wk-old rats during simulated weightlessness. J Appl Physiol 108: 838–844, 2010.
  26. Fagette S, Ming L, Claude Gh, Gauquelin G. Cardiovascular variability and baroreceptor reflex sensitivity over a 14-day tail suspension in rats. J Appl Physiol 78(2): 717–724, 1995.
  27. Chen J, Zhang LF, Ma J. Ultrastructural changes of myocardium in long-term tail-suspended rats. J Chinese Aerospace Med 6: 133–137, 1995.
  28. Zhang LF, Yu ZB, Ma J. Functional alterations in cardiac muscle after medium or long term simulated weightlessness and related cellular mechanisms. J Gravit Physiol 2: 5–8, 1995.
  29. Yu Zh-B, Bao J-X, Ma J, Zhang L-F, Jin J-P. Changes in myocardial contractility and contractile proteins after four weeks of simulate weightlessness in rats. J Gravit Physiol 7(2): P147–P148, 2000.
  30. Dunlap AW, Donald BT, Vandana M, Hofmann PA. Decreased Ca2+sensitivity of isometric tension in skinned cardiac myocytes from tail-suspended rats. J Appl Physiol 80(5): 1612–1617, 1996.
  31. Desplanches D, Mayet MH, Sempore B, Frutoso J, Flandrois R. Effect of spontaneous recovery or retraining after hindlimb suspension on aerobic capacity. J Appl Physiol 63: 1739–1743, 1987.
  32. Overton JM, Woodman CR, Tipton CM. Effect of hindlimb suspension on V˙O2 max and regional blood flow responses to exercise. J Appl Physiol 66: 653–659, 1989.
  33. Kunishima T. Ultrastructural and biochemical enzymatic properties of right ventricular muscles during hindlimb suspension in rats. Nihon Seirigaku Zasshi 55(4): 153–164, 1993.
  34. Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T, et al. Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27: 625–645, 1995.
  35. Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, et al. Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322: 41–59, 1997.
  36. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6): 1283–1298, 2000.
  37. Heggeness MH, Simon M, Singer SJ. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA 75: 3863–3866, 1978.
  38. Martz D, Lasek RJ, Brady ST, Allen RD. Mitochondrial motility in axons: membranous organelles may interact with the force generating system through multiple surface binding sites. Cell Motil 4: 89–101, 1984.
  39. Drubin DG, Jones HD, Wertman KF. Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol Biol Cell 4: 1277–1294, 1993.
  40. Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27: 198–219, 1994.
  41. Rappaport L, Oliviero P, Samuel JL. Cytoskeleton and mitochondrial morphology and function. Mol Cell Biochem 184: 101–105, 1998.
  42. Yaffe MP. The machinery of mitochondrial inheritance and behavior. Science 283: 1493–1497, 1999.
  43. Stromer MH, Bendayan M. Immunocytochemical identification of cytoskeletal linkages to smooth muscle cell nuclei and mitochondria. Cell Motil Cytoskeleton 17: 11–18, 1990.
  44. Almahbobi G, Williams LG, Han XG, Hall PF. Binding of lipid droplets and mitochondria to intermediate filaments in rat Leydig cells. J Reprod Fertil 98: 209–217, 1993.
  45. Georgatos SD, Maison C.  Integration of intermediate filaments into cellular organelles. Int Rev Cytol 164: 91–138, 1996.
  46. Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10: 7–40, 2005.
  47. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184(1-2): 81–100, 1998.
  48. Seppet EK, Eimre M, Andrienko T, Kaambre T, Sikk P, Kuznetsov AV, et al. Studies of mitochondrial respiration in muscle cells in situ: use and misuse of experimental evidence in mathematical modelling. Mol Cell Biochem 256-257(1-2): 219–227, 2004.
  49. Vitorino R, Ferreira R, Neuparth M, Guedes S, Williams J, Tomer KB, et al. Subcellular proteomics of mice gastrocnemius and soleus muscles. Anal Biochem  366(2): 156–169, 2007.
  50. Towbin H, Staehlin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci USA 76: 4350–4354, 1970.
  51. Capetanaki, Y., Milner D. Desmin cytoskeleton in muscle integrity and function. Subcell Biochem 31: 463–495, 1998.
  52. Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organells. Exp Cell Res 313: 2063–2076, 2007.
  53. Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, et al. Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 84(5): 3436–3456, 2003.
  54. Mirzoev TM, Biryukov NS, Veselova OM, Larina IM, Shenkman BS, Ogneva IV. Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading. Biophysics 57(3): 509–514, 2012.
  55. Ogneva IV. The transversal stiffness of fibers and the desmin content in the leg muscles of rats under gravitational unloading of various duration. J Appl Physiol 109: 1702–1709, 2010.
  56. Enns DL, Raastad T, Ugelstad I, Belcastro AN. Calpain/calpastatin activities and substrate depletion patterns during hindlimb unweighting and reweighting in skeletal muscle. Eur J Appl Physiol 100: 445–455, 2007.
  57. Mirzoev TM, Biryukov NS, Veselova OM, Larina IM, Shenkman BS, Ogneva IV. Content of desmin and energy substrates and cell respiration of the rat’s m. soleus fibers under 3- and 7-day reloading after 14-day unloading. Aviakosm Ekolog Med 46(1): 41–45, 2012.
  58. Krieger DA, Tate CA, McMillin-Wood J, Booth FW. Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 48: 23–28, 1980.
  59. Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301: 1–7, 2004.
  60. Goffart S, Franko A, Clemen ChS, Wiesner RJ. a-Actinin 4 and BAT1 interaction with the Cytochrome c promoter upon skeletal muscle differentiation. Curr Genet 49: 125–135, 2006.
  61. Ogneva IV, Biryukov NS, Leinsoo TA, Larina IM. Possible role of non-muscle alpha-actinins in the mechanosensitivity of muscle cells. PLoS ONE 9(4):e96395, 2014.
  62. Park JB, Kim JH, Kim Y, Ha SH, Yoo JS, Du G, et al. Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by alpha-actinin in an ADP-ribosylation factor-reversible manner. J Biol Chem 275(28): 21295–21301, 2000.

The fully formatted PDF version is available.    

Download Article

Int J Biomed. 2014; 4(3):162-168. © 2014 International Medical Research and Development Corporation. All rights reserved.