Role of Nerve Growth Factor in Assessing the Severity of Clinical Manifestations and Outcomes of Perinatal CNS Lesions in Infants

Olga N. Krasnorutskaya, PhD*; Daniel Yu. Bugrimov, PhD; Anna A. Zuykova, PhD, ScD; Alexander N. Pashkov, PhD, ScD; Julia A. Kotova, PhD; Natalia V. Strakhova, PhD; Irina S. Dobrynina, PhD

Voronezh State Medical University named after N.N. Burdenko; Voronezh, the Russian Federation

*Corresponding author: Olga N. Krasnorutskaya, PhD. Voronezh State Medical University named after N.N. Burdenko. Voronezh, the Russian Federation. E-mail:

Published: December 16, 2016.  DOI: 10.21103/Article6(4)_OA5


The purpose of our research was to analyze the association between the serum beta-NGF level and the severity of neurological deficit (ND) in children in the first year of life. Our results suggest a possible functional link between the low level of NGF and the development of severe ND. The obtained results allow us to consider the serum beta-NGF level as a useful marker of the ND severity in young children.

nerve growth factor, neurological deficit, central nervous system, perinatal lesions.
  1. Balakireva EA, Krasnorutskaya ON, Kalmikova GV. Unresolved issues of child neurology. Belgorod State University Scientific Bulletin: Medicine&Pharmacy. 2014; 28(24-1;195):5-7.
  2. Balakirev EA, Krasnorutskaya ON, Zuykova AA. Assessment of the participation of biochemical markers of perinatal lesions of the central nervous system in infants. Journal of New Medical Technologies. 2014; 21(2):26-9.
  3. Krasnorutskaya ON, Balakirev EA, AA Zuykova. The predictive model for the level of participation of markers of perinatal lesions of the central nervous system in infants. Proceedings of the International scientific-practical conference “The modern view on the future of science”. SC "Aeterna"; 2014:84-88.
  4. Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurovasc Res. 2007;4(2):143–51.
  5. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci. 2000; 20:5775–81.
  6. Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann NY Acad Sci. 2002; 962:423–37.
  7. Krasnorutskaya OH, Balakireva EA, Bugrimov DYu, Zuykova AA, Dobrynina IS. Neuro-biochemical parameters in the assessment of the effects of perinatal lesions of the nervous system in young children and their prognostic significance. Science Almanac. 2015;4 (6):237-42.
  8. Barde, Y.A. Neurotrophins: A family of proteins supporting the survival of neurons. Prog Clin Biol Res. 1994; 390:1855–9.
  9. Tuszynski M, Blesch A. Nerve growth factor: From animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer’s disease. Prog Brain Res. 2004; 146:441–9.
  10. Sun W, Sun C, Lin H, Zhao H, Wang J, Ma H, et al. The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials. 2009; 30:4649–55.
  11. Holtzman DM, Sheldon RA, Jaffe W, Cheng Y, Ferriero DM. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol. 1996; 39:114–22.
  12. Sokolova MG The value of brain-derived neurotrophic factor (BDNF) (BDNF) and the nerve growth factor (NGF) in adolescents with residual-organic disorders of CNS of perinatal origin. Modern medicine: current issues. 2014; 32:42-9.
  13. Calza L, Giuliani A, Fernandez M, Pirondi S, D’Intino G, Aloe L, et al. Neural stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor. Proc Natl Acad Sci USA. 2003; 100:7325–30.
  14. Cheng B, Mattson MP. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 1994; 640:56–67.
  15. Kim BT, Rao VL, Sailor KA, Bowen KK, Dempsey RJ. Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg. 2001; 95:674–9.
  16. Sinson G, Perri BR, Trojanowski JQ, Flamm ES, McIntosh TK. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J Neurosurg. 1997; 86:511–8.
  17. Chiaretti A, Antonelli A, Riccardi R, Genovese O, Pezzotti P, Di Rocco C, et al. Nerve growth factor expression correlates with severity and outcome of traumatic brain injury in children. Eur J Paediatr Neurol. 2008;12(3):195-204.
  18. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001; 24:1217–81.
  19. Zhou Z, Chen H, Zhang K, Yang H, Liu J, Huang Q. Protective effect of nerve growth factor on neurons after traumatic brain injury. J Basic Clin Physiol Pharmacol. 2003; 14:217–24.
  20. Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neurotrophins and brain insults. Trends Neurosci. 1994; 17: 490–96.
  21. De Santis S, Pace A, Bove L, Cognetti F, Properzi F, Fiore M, et al. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin Cancer Res. 2000;6(1):90-5.

The fully formatted PDF version is available.
Download Article
Int J Biomed. 2016;6(4):276-278. © 2016 International Medical Research and Development Corporation. All rights reserved.