Genetic Diversity, Epigenetic Reprogramming and Environmental Factors: Leading Directions in the Study of the Complex Human Diseases

Marietta Eliseyeva, PhD, ScD

International Medical Research and Development Corporation, NY, USA

Published: December 23, 2017.  doi: 10.21103/Article7(4)_EM


The article discusses the main issues of the complex interactions between genetic, epigenetic and environmental factors in the development of the complex human diseases.

genetic diversity ● epigenetic reprogramming ● environmental factors ● complex human diseases
  1. Cavalli-Sforza LL, Menozzi P, Piazza A.  History and Geography of Human Genes.  Princeton, NJ: Princeton University Press; 1994.
  2. Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet. 2003;33 Suppl:266–75.
  3. McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010;141(2):210-7. doi: 10.1016/j.cell.2010.03.032.
  4. Ruffer MA. On arterial lesions found in Egyptian Mummies (1580 BC – 535 AD). J Pathol Bacteriol. 1911;16(4):453–462.
  5. Allam AH, Mandour Ali MA, Wann LS, Thompson RC, Sutherland ML, Sutherland JD, et al. Atherosclerosis in ancient and modern Egyptians: the Horus study. Glob Heart. 2014;9(2):197-202. doi: 10.1016/j.gheart.2014.03.2454.
  6. Benedictow Ole J. The Black Death 1346-1353: The Complete History. Boydell & Brewer, Limited; 2008
  7. Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention and treatment. Lancet. 2006;368(9534):489-504.
  8. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593): 722-5.
  9. Dean M, Jacobson LP, McFarlane G, Margolick JB, Jenkins FJ, Howard OM, et al. Reduced risk of AIDS lymphoma in individuals heterozygous for the CCR5-delta32 mutation. Cancer Res. 1999;59(15):3561-4.
  10. Garzino-Demo A. Chemokines and defensins as HIV suppressive factors: an evolving story. Curr Pharm Des. 2007;13(2):163-72.
  11. Kaushik M, Chaudhary S, Mahendru M, Kumar M, Kukreti S. Genetic Variations: Heroes or Villains. J Down Syndr Chr Abnorm. 2016;2:2
  12. Ku CS, Loy EY, Salim A, Pawitan Y, Chia KS. The discovery of human genetic variations and their use as disease markers: past, present and future. J Hum Genet. 2010 Jul;55(7):403-15. doi:10.1038/jhg.2010.55.
  13. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294-305. doi: 10.1016/j.ajhg.2011.02.002.
  14. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76. doi: 10.1056/NEJMra0905980.
  15. Maher B. Personal genomes: The case of the missing heritability. Nature. 2008;456(7218):18-21. doi: 10.1038/456018a.
  16. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. doi: 10.1038/nature08494.
  17. Edwards MD, Symbor-Nagrabska A, Dollard L, Gifford DK, Fink GR.Interactions between chromosomal and nonchromosomal elements reveal missing heritability.Proc Natl Acad Sci USA. 2014;111(21):7719-22. doi: 10.1073/pnas.1407126111.
  18. Barr DR, Sherrill ET. Mean and variance of truncated normal distribution. TAS. 1999;53(4):357–361.
  19. Dempster ER, Lerner IM. Heritability of Threshold Characters. Genetics.1950;35(2):212–36.
  20. Paynter NP, Chasman DI, Paré G, Buring JE, Cook NR, Miletich JP, Ridker PM. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303(7):631-7. doi: 10.1001/jama.2010.119.
  21. Patrinos GP, Kollia P, Papadakis MN. Molecular diagnosis of inherited disorders: lessons from hemoglobinopathies. Hum. Mutat. 2005;26(5):399–412.
  22. Fernando MM, Stevens CR, Walsh EC, De-Jager PL, Goyette P, Plenge RM, et al.  Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;4(4):e1000024. doi: 10.1371/journal.pgen.1000024.
  23. Bird TD. Genetic factors in Alzheimer's disease. N Engl J Med. 2005;352(9):862–4.
  24. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39(1):31–40.
  25. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995;11(1):76–82.
  26. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord. 2007;8(2):173-82
  27. Waddington CH. The strategy of the genes; a discussion of some aspects of theoretical biology. London: Allen & Unwin; 1957
  28. Patkin EL, Quinn J. Epigenetic mechanisms of predisposition to complex
    pathologies of man. Ekol Genetics. 2010;8(4):44-56.
  29. Fomchenko EE, Voropaev EV. Biological aspects of DNA methylation. Probl Health Ekol. 2012;(3):55-59.
  30. Scarano MI, Strazzullo M, Matarazzo MR, D'Esposito M. DNA methylation 40 years later: Its role in human health and disease. J Cell Physiol. 2005;204(1):21-35.
  31. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597-610
  32. He Y, Ecker JR. Non-CG Methylation in the Human Genome. Annu Rev Genomics Hum Genet. 2015;16:55-77. doi: 10.1146/annurev-genom-090413-025437..
  33. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Rajagopal N, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523(7559):212-6. doi: 10.1038/nature14465.
  34. Gudsnuk K, Champagne FA.Epigenetic influence of stress and the social environment. ILAR J. 2012;53(3-4):279-88. doi: 10.1093/ilar.53.3-4.279.
  35. Pai AA, Pritchard JK, Gilad Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet. 2015;11(1):e1004857. doi: 10.1371/journal.pgen.1004857.
  36. Schubeler D. Function and information content of DNA methylation. Nature. 2015 Jan 15;517(7534):321-6. doi: 10.1038/nature14192.
  37. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2(6):607-17. doi: 10.1177/1947601910393957.
  38. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009;41(2):240-5. doi: 10.1038/ng.286.
  39. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2011;13(2):97–109. doi: 10.1038/nrg3142.
  40. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA. 2012;109 Suppl 2:17253-60. doi: 10.1073/pnas.1121249109.
  41. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477-81. doi: 10.1038/nature12433.
  42. Hiltunen MO, Yla-Herttuala S. DNA methylation, smooth muscle cells, and atherogenesis. Arterioscler Thromb Vasc Biol. 2003;23(10):1750-3.
  43. Luczak MW, Jagodzinski PP. The role of DNA methylation in cancer development. Folia Histochem Cytobiol. 2006;44(3):143-54.
  44. Kwon NH, Kim JS, Lee JY, Oh MJ, Choi DC. DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol. 2007;28(2):139-46.
  45. Takami N, Osawa K, Miura Y, Komani K, Taniguchi M, Shiraishi M, et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 2006;54(3):779-87.
  46. Heyn H1, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 201226;109(26):10522-7. doi: 10.1073/pnas.1120658109.
  47. Coppedè F. Epigenetic biomarkers of colorectal cancer: Focus on DNA methylation. Cancer Lett. 2014;342(2):238-47. doi: 10.1016/j.canlet.2011.12.030.
  48. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan.Front Cell Dev Biol. 2014 Sep 9;2:49. doi: 10.3389/fcell.2014.00049. eCollection 2014.
  49. Natarajan AT, Vermeulen S, Darroudi F, Valentine MB, Brent TP, Mitra S, Tano K. Chromosomal localization of human O6-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. Mutagenesis. 1992;7(1):83-5
  50. Fabbri M, Croce CM, Calin GA. MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk Lymphoma. 2009; 50(2):160-70. doi: 10.1080/10428190802535114.
  51. Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(3):251-5. doi: 10.1007/s12265-010-9169-7.
  52. Montgomery RL, van Rooij E. MicroRNA regulation as a therapeutic strategy for cardiovascular disease. Curr Drug Targets. 2010;11(8):936-42.
  53. Provost P. Interpretation and applicability of microRNA data to the context of Alzheimer's and age-related diseases.Aging (Albany NY). 2010;2(3):166-9.
  54. Dong C, Yoon W, Goldsmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr. 2002;132(8 Suppl):2406S-2409S
  55. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovascular Res. 1999;43(4):985-91.
  56. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res. 2000;46(1):172-9.
  57. Dasgupta C, Chen M, Zhang H, Yang S, Zhang L. Chronic hypoxia during gestation causes epigenetic repression of the estrogen receptor-alpha gene in ovine uterine arteries via heightened promoter methylation. Hypertension. 2012;60(3):697-704. doi: 10.1161/HYPERTENSIONAHA.112.198242.
  58. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines.Genome Biol. 2011;12(1):R10. doi: 10.1186/gb-2011-12-1-r10.
  59. Fraser HB, Lam LL, Neumann SM, Kobor MS. Population-specificity of human DNA methylation. Genome Biol. 2012;13(2):R8. doi: 10.1186/gb-2012-13-2-r8.
  60. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J, et al. DNA methylation contributes to natural human variation. Genome Res. 2013;23(9):1363-72. doi: 10.1101/gr.154187.112.
  61. Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun. 2015;6:10047. doi: 10.1038/ncomms10047.
  62. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease.Circulation. 2011 May 17;123(19):2145-56. doi: 10.1161/CIRCULATIONAHA.110.956839.
  63. Joseph J, Handy DE, Loscalzo J. Quo vadis: whither homocysteine research? Cardiovasc Toxicol. 2009;9(2):53-63. doi: 10.1007/s12012-009-9042-6.
  64. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000; 275(38):29318–23.
  65. Stern LL, Mason JB, Selhub J, Choi SW. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev. 2000; 9(8):849–53.
  66. Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, et al. A common mutation in the 5,10- methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11.
  67. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis. 2006;29(1):3–20.
  68. Pogribny IP, Beland FA.DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009;66(14):2249-61. doi: 10.1007/s00018-009-0015-5.
  69. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, et al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49(8):1292–6.
  70. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001;107(10):1263–73.
  71. Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem. 2004;279(51):52961–9.
  72. Jacobson TA, Miller M, Schaefer EJ. Hypertriglyceridemia and cardiovascular risk reduction. Clin Ther. 2007;29(5):763–77.
  73. Mikael LG, Wang XL, Wu Q, Jiang H, Maclean KN, Rozen R. Hyperhomocysteinemia is associated with hypertriglyceridemia in mice with methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2009;98(1-2):187-94. doi: 10.1016/j.ymgme.2009.05.011.
  74. Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718-25. doi: 10.2337/db09-1003.
  75. Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10(3):189-98. doi: 10.1016/j.cmet.2009.07.011.
  76. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.
  77. Chen L, Chen K, Lavery LA, Baker SA, Shaw CA, Li W, Zoghbi HY. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome.Proc Natl Acad Sci USA. 2015;112(17):5509-14. doi: 10.1073/pnas.1505909112.
  78. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522(7554):89-93. doi: 10.1038/nature14319.
  79. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17(2):215-22. doi: 10.1038/nn.3607.
  80. Braiteh F, Soriano AO, Garcia-Manero G, Hong D, Johnson MM, Silva Lde P, et al. Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res. 2008;14(19):6296-301. doi: 10.1158/1078-0432.CCR-08-1247.
  81. Raffoux E, Cras A, Recher C, Boëlle PY, de Labarthe A, Turlure P, et al. Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget. 2010;1(1):34-42.

The fully formatted PDF version is available.
Download Article
International Journal of Biomedicine. 2017;7(4):269-275. ©2017 International Medical Research and Development Corporation. All rights reserved.