Complex Assessment of the Blood Oxidative Metabolism in Qualified Athletes

Konstantin A. Karuzin, Andrew K. Martusevich, Alexander S. Samoilov

 
International Journal of Biomedicine. 2018;8(3):235-239.   
DOI: 10.21103/Article8(3)_OA14
Originally published September 15, 2018  

Abstract: 

The purpose of this research was to study the structure of the shifts in the blood oxidative metabolism in professional athletes.
Materials and Methods: The study included 262 highly qualified athletes (Group 1) aged between 19 and 29 years. The control group (Group 2) consisted of healthy untrained volunteers of similar age. In blood plasma, we estimated the levels of 8-isoprostane, ox-LDL, alpha- and beta-carotene, alpha- and gamma-tocopherols, and tissue-specific antioxidants (lycopine, luteine and zeaxantine) and the activity of superoxide dismutase and glutathione peroxidase.
Results: Thus, in qualified athletes, characteristic changes in the state of oxidative metabolism, concerning the components of the pro- and antioxidant systems, were determined; however, the inhomogeneity of these metabolic transformations attracts attention. The revealed regularity allows confirming the previously stated hypothesis about the heterogeneity of shifts in oxidative metabolism in professional athletes, which suggests different approaches to their correction.

Keywords: 
oxidative stress • professional athletes • blood oxidative metabolism • antioxidants
References: 
  1. Zborovskaia IA, Bannikova MV. [The body's antioxidant system, its significance in metabolism. Clinical aspects]. Vestn Ross Akad Med Nauk;1995;(6):53–60. [Article in Russian]. PubMed
  2. Statsenko EA. [Characteristics of lipid peroxidation and markers of endogenous intoxication in monitoring physical loads during rower training]. Vopr Kurortol Fizioter Lech Fiz Kult. 2011;(3):41–5. [Article in Russian]. PubMed
  3. Aguiló A, Tauler P, Fuentespina E, Tur JA, Córdova A, Pons A. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav. 2005;84(1):1-7. PubMed
  4. Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901-10. PubMed
  5. Vider J, Lehtmaa J, Kullisaar T, Vihalemm T, Zilmer K, Kairane C, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology. 2001;7(4):263-270. PubMed
  6. Kalinkin LA, Statsenko EA, Ponomareva AG, Morozov VN, Kutnyakhova LV, Krivoshchapov MV, et al. [Oxidative stress in physical training: methods of diagnosis and correction of antioxidant status]. Bulletin of Sport Science. 2014;2:31-35. [Article in Russian]
  7. Dreissigacker U, Wendt M, Wittke T, Tsikas D, Maassen N. Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men. Nitric Oxide. 2010 Sep 15;23(2):128-35. doi: 10.1016/j.niox.2010.05.003. PubMed
  8. Steinberg J, Gainnier M, Michel F, Faucher M, Arnaud C, Jammes Y. The post-exercise oxidative stress is depressed by acetylsalicylic acid. Respir Physiol Neurobiol. 2002 Apr;130(2):189-99. PubMed
  9. Peretyagin SP, Martusevich AK, Vanin AF. [Molecular-cellular mechanisms of  transformation of homeostasis of biosystems with reactive oxygen species and nitrogen]. Medical Almanac. 2013; 3: 80-81. [Article in Russian]
  10. Morillas-Ruiz JM1, Villegas García JA, López FJ, Vidal-Guevara ML, Zafrilla P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin Nutr. 2006;25(3):444-53. PubMed
  11. Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med. 2009;6(4):587-95. doi: 10.1016/j.genm.2009.10.001. PubMed
  12. Veskoukis AS, Nikolaidis MG, Kyparos A, Kouretas D. Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic Biol Med. 2009;47(10):1371-4. doi: 10.1016/j.freeradbiomed.2009.07.014. PubMed
  13. Kukes VT, Gorodetsky VV. [Sport pharmacology: achievements, problems, and prospects]. Sports Medicine: Research and Practice. 2010;1(1):12-15. [Article in Russian]
  14. Cholewa J, Poprzęcki S, Zajac A, Waskiewicz Z. The influence of vitamin C on blood oxidative stress parameters in basketball players in response to maximal exercise. Science & Sports. 2008;23(3-4):176–182.
  15. McAnulty SR, McAnulty LS, Nieman DC, Morrow JD, Shooter LA, Holmes S, Heward C, Henson DA. Effect of alpha-tocopherol supplementation on plasma homocysteine and oxidative stress in highly trained athletes before and after exhaustive exercise. J Nutr Biochem. 2005;16(9):530-7. PubMed
  16. Statsenko EA, Serezhkina TV, Korolevich MP, Al’kevich EV. [Laboratory methods for assessing the state of the antioxidant system of the body in the process of sports]. Meditsinskii Zhurnal. 2008;2:73–75. [Article in Russian]
  17. Wagner KH, Reichhold S, Hölzl C, Knasmüller S, Nics L, Meisel M, Neubauer O. Well-trained, healthy triathletes experience no adverse health risks regarding oxidative stress and DNA damage by participating in an ultra-endurance event. Toxicology. 2010;278(2):211-6. doi: 10.1016/j.tox.2009.09.006. PubMed
  18. Solodkov AS, Levshin IV, Polikarpochkin AN, Mjasnikov AA. [Physiological mechanisms and laws of functional recovery processes in sports in the various climatic and geographical conditions]. Human Ecology. 2010;6:36-41.[Article in Russian].
  19. Klehe UC, Anderson N. Working hard and working smart: motivation and ability during typical and maximum performance. J Appl Psychol. 2007;92(4):978-92. PubMed
  20. Pfeiffer JM, Askew EW, Roberts DE, Wood SM, Benson JE, Johnson SC, Freedman MS. Effect of antioxidant supplementation on urine and blood markers of oxidative stress during extended moderate-altitude training. Wilderness Environ Med. 1999 Summer;10(2):66-74. PubMed
  21. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci. 2010;86(1-2):39-44. doi: 10.1016/j.lfs.2009.11.003. PubMed
  22. Zaitsev VG, Ostrovskii OV, Zakrevskii VI. [Correlation between chemical structure and a target as basis for classification of direct-acting antioxidants]. Eksp Klin Farmakol. 2003;66(4):66-70. [Article in Russian]. PubMed
  23. Hilfiker R, Hübner K, Lorenz T, Marti B. Effects of drop jumps added to the warm–up of elite sport athletes with a high capacity for explosive force development. J Strength Cond Res. 2007;21(2):550–5. PubMed
  24. Leelarungrayub D1, Saidee K, Pothongsunun P, Pratanaphon S, YanKai A, Bloomer RJ. Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women. J Bodyw Mov Ther. 2011;15(3):355-62. doi: 10.1016/j.jbmt.2010.03.006. PubMed
  25. Carpenter S, Knaus M, Suh M. Association between lutein, zeaxantine, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr. 2009;49(4):313-26. doi: 10.1080/10408390802066979. PubMed
  26. Kostikas K, Papatheodorou G, Psathakis K, Panagou P, Loukides S. Oxidative stress in expired breath condensate of patients with COPD. Chest 2003;124(4):1373–80. PubMed

Download Article
Received August 7, 2018.
Accepted August 20, 2018.
©2018 International Medical Research and Development Corporation.