The Relationship between Blood Thyroid Hormone and Dopamine Levels in Residents of the Arctic Regions of Russia

Elena V. Tipisova, Irina N. Gorenko, Victoria A. Popkova, Alexandra E. Elfimova, Dmitry S. Potutkin, Sergey V. Andronov, Ruslan A. Kochkin, Andrei I. Popov, Andrei A. Lobanov, Elena N. Bogdanova

 
International Journal of Biomedicine. 2019;9(1):43-47.
DOI: 10.21103/Article9(1)_OA8
Originally published March 15, 2019

Abstract: 

Due to the presence of contradictory results about the effect of dopamine on the synthesis and secretion of thyroid hormones, as well as the absence of this information in clinically healthy individuals, we were interested in studying this problem in permanent residents of the Arctic territories, which are characterized by high thyroid activity and dopamine content. The aim of this work was to study the hormone levels of hypothalamicpituitarythyroid axis (HPTA) under the different levels of dopamine in the blood of permanent residents of the Arctic territories.
Materials and Methods: We examined 316 healthy individuals (the indigenous population, mestizos, and the local Russian population) born and permanently residing in the territories of the Russian Arctic zone. The examined participants were divided into 3 groups: Group 1 with undetectable levels of dopamine in the blood (0 nmol/l); Group 2 with reference levels of dopamine (<0.653 nmol/l); and Group 3 with increased levels of dopamine (>0.653 nmol/l). The serum levels of TSH, T4, FT4, T3, and FT3 , and the plasma dopamine level were determined by enzyme immunoassay. The plasma cAMP level was determined by radioimmunoassay.
Results: In individuals of Group 1, there was a decrease in the activity of  hypothalamicpituitarythyroid axis (HTPA) and the peripheral conversion of iodothyronines compared with persons with reference or increased dopamine levels. In individuals of Groups 2 and 3, we found an increase in the activity of HTPA with an increase in the blood level of dopamine. The absence of the inhibitory effect of high levels of dopamine on HPTA hormones in the examined individuals may be a compensatory-adaptive response of the body under the conditions of permanently acting extreme factors of the North.

Keywords: 
dopamine • iodothyronines• cyclic adenosine monophosphate • Arctic
References: 
  1. Maslov LN, Vychuzhanova EA. The role of the sympathoadrenal system in adaptation to cold. Neurosci Behav Physiol. 2016;46(5):589-600. doi: 10.1007/s11055-016-0283-0.
  2. Harinath K, Malhotra AS. Pal K, Prasad R, Kumar R, Sawhney RC. Autonomic nervous system and adrenal response to cold in man at Antarctica. Wilderness Environ Med. 2005;16(2):81-91.
  3. Tsirkin VI, Bagaev VI, Bein BI. Role of Dopamine in Brain Activity (Literature Review). Vyatskii Med Vestnik. 2010;(1):7-18. [Article in Russian].
  4. Sapronov NS, Masalova OO. Neurophysiological effects of thyroid hormones. Psychopharmacol. Biol. Narcol. 2007;7(2):1533-1541. [Article in Russian].
  5. Haugen BR. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23(6):793-800. doi:10.1016/j.beem.2009.08.003.
  6. Pereira JC Jr, Pradella-Hallinan M, Lins Pessoa Hd. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics (Sao Paulo). 2010;65(5):548-54. doi: 10.1590/S1807-59322010000500013.
  7. Lychkova AE. [Nervous regulation of thyroid function]. Vestn Ross Akad Med Nauk. 2013;(6):49-55. [Article in Russian].
  8. Smelova IV, Golovneva ES. Dynamics of functional activity of thyrocytes in the setting of changing morphofunctional activity of mast cells of the thyroid gland upon infrared laser therapy. Bulletin of RSMU. 2016;(6):39-44. [Article in Russian].
  9. Melander A. Aminergic regulation of thyroid activity: Importance of the sympathetic innervation and of the mass cells of the thyroid gland. Acta Med Scand. 1977;201(4):257-62. doi: 10.1111/j.0954-6820.1977.tb15696.x.
  10. Tipisova EV, Kipriyanova KE, Gorenko IN, Lobanov AA, Popov AI, Andronov SV, et al. The content of dopamine and hormones of system "hypophysis-thyroid" in blood of nomadic, settled and local population of the Arctic. Russian Clinical Laboratory Diagnostics. 2017;62(5):52-56. doi: 10.18821/0869-2084-2017-62-5-291-296. [Article in Russian].
  11.  Levy SB, Leonard WR, Tarskaia LA, Klimova TM, Fedorova VI, Baltakhinova ME, et al. Seasonal and socioeconomic influences on thyroid function among the Yakut (Sakha) of Eastern Siberia. Am J Hum Biol. 2013;25(6):814-20. doi: 10.1002/ajhb.22457. Epub 2013 Oct 15.
  12. Reed HL, Burman KD, Shakir KM, O'Brian JT. Alterations in the hypothalamic-pituitary-thyroid axis after prolonged residence in Antarctica. Clin Endocrinol (Oxf). 1986;25(1):55-65.
  13. Reed HL, Brice D, Shakir KM, Burman KD, D'Alesandro MM, O'Brian JT. Decreased free fraction of thyroid hormones after prolonged Antarctic residence. J Appl Physiol. 1990;69(4):1467-72.
  14. Reed HL, Silverman ED, Shakir KM, Dons R, Burman KD, O'Brian JT. Changes in serum triiodothyronine (T3) kinetics after prolonged Antarctic residence: the polar T3 syndrome. J Clin Endocrinol Metab. 1990;70(4):965-74.
  15. Harford RR, Reed HL, Morris MT, Sapien IE, Warden R, D'Alesandro MM. Relationship between changes in serum thyrotropin and total and lipoprotein cholesterol with prolonged Antarctic residence. Metabolism. 1993;42(9):1159-63.
  16. Do NV, Mino L, Merriam GR, LeMar H, Case HS, Palinkas LA, Reedy K, Reed HL. Elevation in serum thyroglobulin during prolonged Antarctic residence: effect of thyroxine supplement in the polar 3,5,3'-triiodothyronine syndrome. J Clin Endocrinol Metab. 2004;89(4):1529-33.
  17. Hassi J, Sikkilä K, Ruokonen A, Leppäluoto J.The pituitary-thyroid axis in healthy men living under subarctic climatological conditions. J Endocrinol. 2001;169(1):195-203.
  18.  Plasqui G, Kester AD, Westerterp KR. Seasonal variation in sleeping metabolic rate, thyroid activity, and leptin. Am J Physiol Endocrinol Metab. 2003;285(2):E338-43.
  19.  Kaptein EM, Kletzky OA, Spencer CA, Nicoloff JT. Effects of prolonged dopamine infusion on anterior pituitary function in normal males. J Clin Endocrinol Metab. 1980;51(3):488-91.
  20.  Shupnik MA, Greenspan SL, Ridgway EC. Transcriptional regulation of thyrotropin subunit genes by thyrotropin-releasing hormone and dopamine in pituitary cell culture. J Biol Chem. 1986;261(27):12675-9.
  21. Greenspan SL, Shupnik MA, Klibanski A, Ridgway EC Divergent dopaminergic regulation of TSH, free alpha-subunit, and TSH-beta in pituitary cell culture. Metabolism. 1986;35(9):843-6.
  22. Feek CM, Sawers JS, Brown NS, Seth J, Irvine WJ, Toft AD. Influence of thyroid status on dopaminergic inhibition of thyrotropin and prolactin secretion: evidence for an additional feedback mechanism in the control of thyroid hormone secretion.J Clin Endocrinol Metab. 1980;51(3):585-9.
  23. Scanlon MF, Weetman AP, Lewis M, Pourmand M, Rodriguez-Arnao MD, Weightman DR, Hall R. Dopaminergic modulation of circadian thyrotropin rhythms and thyroid hormone levels in euthyroid subjects. J Clin Endocrinol Metab. 1980;51(6):1251-6.
  24. Melander A, Sundler F, Westgern U. Intrathyroidal amines and the synthesis of thyroid hormone. Endocrinology. 1973;93(1):193-200. doi:  10.1210/endo-93-1-193.
  25.  Obregon MJ, Mills I, Silva JE, Larsen PR. Catecholamine stimulation of iodothyronine 5′-deiodinase activity in rat dispersed brown adipocytes Endocrinology. 1987;120(3):1069-72. doi: 10.1210/endo-120-3-1069
  26.  Burger AG. Environment and thyroid function. J Clin Endocrinol Metab. 2004;89(4):1526-8. doi: 10.1210/jc.2004-0332
  27. Santos NC, Costa P, Ruano D, Macedo A, Soares MJ, Valente J, et al. Revisiting thyroid hormones in schizophrenia. J Thyroid Res. 2012;2012:569147. doi: 10.1155/2012/569147.
  28. Toccafondi R, Rotella CM, Tanini A, Aterini S, Borrelli D, Loddi L, Arcangeli P. Effects of TSH on cAMP levels and thyroid hormone release in human thyroid 'autonomous' nodules: relationship with iodothyronine and iodine content in thyroglobulin. Clin Endocrinol (Oxf). 1982;17(6):537-546. doi: 10.1111/j.1365-2265.1982.tb01626.x.

Download Article
Received December 13, 2018.
Accepted January 30, 2019.
©2019 International Medical Research and Development Corporation.