The Molecular Genetic Features of Patients with Juvenile Arthritis in Yakutia

Khariton A. Kurtanov, Fekla V. Vinokurova, Nadezhda I. Pavlova, Aitalina S. Golderova, Aleksandra T. Diakonova, Galina A. Apsolikhova, Vlad A. Alekseev

 
International Journal of Biomedicine. 2019;9(2):121-124.
DOI: 10.21103/Article9(2)_OA7
Originally published June 15, 2019  

Abstract: 

The research objective was to conduct a retrospective study of patients with Juvenile arthritis (JA) in association with the carriage of the HLA-B27 allele.
Materials and Methods: A total of 73 patients (39 boys and 34 girls aged from 1 to 16 years, mean age of 10.28±4.24 years) living in Yakutia with Juvenile Chronic Arthritis (JCA), Juvenile Ankylosing Spondylitis (JAS), Juvenile Psoriatic Arthritis (JPsA), and reactive arthritis (RA) were examined. Among them, 62(84.9%) children were of Yakut nationality, and 11(15.1%) – the Russian nationality. The control group included 85 Yakuts without clinical diagnosis of arthritis. Testing for the HLA-B27 allele was performed according to Dominquez et al. (1992) as modified by Steffens-Nakken et al. (1995).
Results: According to the genotyping results, in 30 of 73 examined samples an association was found between the HLA-B27 allele carriage and JA. The HLA-B27 allele was diagnosed in 24(38.7%) Yakuts and 6(54.5%) ethnic Russians. For further analysis, all patients (Yakuts, Russians) were divided into diagnosis-related groups. Diagnoses of JAS (n=10) and JCA (n=9) prevailed in Yakuts. In the Russian children, RA was more common (n=4). In population sampling of Yakuts, the frequency of the HLA-B27 allele was 33%. A comparison of the frequencies of the HLA-B27 allele among the Yakut patient groups and the control group found a statistically significant association with JAS. The carriage of the HLA-B27 allele in Yakut females did not increase the risk of JAS development, whereas in male Yakuts this risk increased by 5.6 times.

Keywords: 
Juvenile ankylosing spondylitis • HLA-B27 • Yakuts
References: 
  1. Bochkov N.P. Human genetics (heredity and pathology).  M.: Meditsina; 1978.[in Russian].
  2. Murphy EA, Chase GA. Principles of Genetic Counseling. Yearbook Medical Publishers, Chicago; 1975.
  3. Benevolenskaya L, Myakotkin V, Ondrashik M, Gemer B. Clinical and genetic aspects of rheumatic diseases.  M.: Meditsina; 1989. [in Russian].
  4. Zolobova ES, Yasdovsky VV, Voronin AV, Boldyreva MP. [Immunogenetic features of juvenile rheumatoid arthritis]. Rheumatology Science and Practice. 2007;45(5):66-73. [Article in Russian].
  5. Thomas GP, Brown MA. Genetics and genomics of ankylosing spondylitis. Immunol Rev. 2010;233(1):162-80. doi: 10.1111/j.0105-2896.2009.00852.x.
  6. Morling N, Friis J, Fugger L, Georgsen J, Heilmann C, Pedersen FK, et al. DNA polymorphism of HLA class II genes in pauciarticular juvenile rheumatoid arthritis. Tissue Antigens. 1991;38(1):16-23.
  7. Wordsworth P. Progress in the immunogenetics of rheumatoid arthritis. Hosp Pract (Off Ed). 1995;30(4):77-81.
  8. Nasonov EL. Genetically engineered biological medications in the treatment of rheumatoid arthritis. M.: IMA- PRESS; 2013. [in Russian].
  9. Nasonov EL, Denisov LN, Stanislav ML. [Interleukin-17 is a new target for anti-cytokine therapy of immune inflammatory rheumatic diseases]. Rheumatology Science and Practice. 2013;51(5):545-552. [Article in Russian].
  10. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880-5.
  11. Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol. 2008;295(2):F323-34. doi: 10.1152/ajprenal.00050.2008.
  12. DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60(9):2633-43. doi: 10.1002/art.24763.
  13. Schaeverbeke T, Truchetet ME, Richez C. Gut metagenome and spondyloarthritis. Joint Bone Spine. 2013;80(4):349-52. doi: 10.1016/j.jbspin.2013.02.005.
  14. Sherlock JP, Cua DJ. Interleukin-23: a promising therapeutic target in seronegative spondyloarthropathy. Curr Opin Pharmacol. 2013;13(3):445-8. doi: 10.1016/j.coph.2013.03.002.
  15. Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44-51. doi: 10.1016/j.molimm.2013.07.013.
  16. Steffens-Nakken HM, Zwart G, van den Bergh FA. Validation of allele-specific polymerase chain reaction for DNA typing of HLA-B27. Clin Chem. 1995;41(5):687-92.
  17. Dominguez O, Coto E, Martinez-Naves E, Choo SY, López-Larrea C. Molecular typing of HLA-B27 alleles. Immunogenetics. 1992;36(5):277-82.
  18. Bon MA, van Oeveren-Dybicz A, van den Bergh FA. Genotyping of HLA-B27 by real-time PCR without hybridization probes. Clin Chem. 2000;46(7):1000-2.
  19. Fefelova VV, Khamnagadaev II., Polikarpov LS. [HLA-B27 antigen and spondyloarthropathies in Arctic Mongoloids]. Bulletin of the SB RAMS] 2010;30(6):136-139. [Article in Russian].
  20. Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD. Ankylosing spondylitis and HL-A 27. Lancet. 1973;1(7809):904-7.
  21. Konenkov VI, Golovanova OV, Prokof'ev VF, Shevchenko AV, Zonova EV, Korolev MA, et al. [Distribution of allelic variants of promotor sites of cytokine genes and endothelial growth factor gene among healthy subjects and patients with rheumatoid arthritis in a Russian Europeoid population]. Vestn Ross Akad Med Nauk. 2010;(9):9-14. [Article in Russian].

Download Article
Received March 17, 2019.
Accepted May 28, 2019.
©2019 International Medical Research and Development Corporation.