Silver in Wound and Trophic Ulcer Treatment: A Modern View of the Problem

Serhiy H. Hryvenko, Aleksander A. Golomidov, Sydyk A. Sidikov, Manvel S. Margarian, Madina R. Bostanova, Zaineb I. Salpagarova

 
For citation: Hryvenko SH, Golomidov AA, Sidikov SA, Margarian MS, Bostanova MR, Salpagarova ZI. Silver in Wound and Trophic Ulcer Treatment: A Modern View of the Problem. International Journal of Biomedicine. 2024;14(2):240-245. doi:10.21103/Article14(2)_RA6
 
Originally published June 5, 2024
 

Abstract: 

This review presents published data on the history of use, mechanism of action, and effectiveness of silver and silver-based drugs in surgical practice. A literature search was carried out using PubMed, EMBASE, Google Scholar, and E-Library databases. Analysis of available literature data convincingly demonstrates the effectiveness of silver nanocomposites as antibacterial and anti-inflammatory agents. The demonstrated antimicrobial property of silver nanoparticles (AgNPs) against various antibiotic-resistant bacteria is especially significant for clinical use. Silver nanoparticles have clinically proven effective in treating wounds and trophic ulcers.

Keywords: 
silver • silver nanoparticles • wound • trophic ulcer
References: 
  1. Rzheussky SE. Silver nanoparticles in medicine. Vestnik VGMU. 2022;21(2):15-24. doi: 10.22263/2312-4156.2022.2.15. (In Russ.)
  2. Rzheussky SE, Kuhach VV, Valueva MA. Economic aspects of application and antimicrobial activity of silver-containing drugs. Vestnik Farmacii. 2013;2(60):25-30. (In Russ.)
  3. Shrestha R, Joshi DR, Gopali J, Piya S. Oligodynamic fraction of silver, copper and brass on enteric bacteria isolated from water of Kathmandu Valley. Nepal Journal of Science and Technology. 2009;10:189-193. doi:10.3126/njst.v10i0.2959
  4. Melaiye A, Youngs WJ. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat. 2005;15(2):125-30. doi: 10.1517/13543776.15.2.125
  5. Sattori I, Mahmudov KB, Rajabov U, Rajabali M, Nazarov F. Historical aspects of the application of silver compounds. Report of the TAAS. 2018;1:62-65. (In Russ.)
  6. Marx DE, Barillo DJ. Silver in medicine: the basic science. Burns. 2014 Dec;40 Suppl 1:S9-S18. doi: 10.1016/j.burns.2014.09.010. PMID: 25418438.
  7. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013 Aug;26(4):609-21. doi: 10.1007/s10534-013-9645-z. Epub 2013 Jun 15. PMID: 23771576.
  8. Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J Inflamm (Lond). 2010 Feb 19;7:13. doi: 10.1186/1476-9255-7-13. PMID: 20170497; PMCID: PMC2841158.
  9. Elliott C. The effects of silver dressings on chronic and burns wound healing. Br J Nurs. 2010 Aug 12-Sep 8;19(15):S32-6. doi: 10.12968/bjon.2010.19.Sup5.77707. PMID: 20852480.
  10.  Kalinichenko AP, Hryvenko SH, Umerov EE, Uzbekova LD, Usmanova TE, Izosimov VV. The Morphological Rationality for the Expediency of Topical Application of Silver Sulfathiazole in Patients with Diabetic Foot Syndrome. International Journal of Biomedicine. 2022;12(3):404-408. doi:10.21103/Article12(3)_OA10
  11.  Kalinichenko A, Grivenko S, Umerov E. Features of the dynamics of inflammatory markers during local treatment of complicated forms of diabetic foot syndrome. MIA Medical Bulletin. 2022;121(6):11-14. doi:10.52341/20738080_2022_121_6_11.  (In Russ.)
  12.  Kalinichenko AP, Grivenko SG, Umerov EE. Monitoring of molecular mechanisms of a complicated reparative process during local treatment of the diabetic foot syndrome. Tavricheskiy mediko-biologicheskiy vestnik. 2022;25(4):22-28. doi: 10.29039/2070-8092-2022-25-4-22-28. (In Russ.)
  13.  Lansdown AB, Sampson B, Rowe A. Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds. J Anat. 1999 Oct;195(Pt 3):375-86. doi: 10.1046/j.1469-7580.1999.19530375.x. PMID: 10580852; PMCID: PMC1468006.
  14. Helary C, Bataille I, Abed A, Illoul C, Anglo A, Louedec L, Letourneur D, Meddahi-Pellé A, Giraud-Guille MM. Concentrated collagen hydrogels as dermal substitutes. Biomaterials. 2010 Jan;31(3):481-90. doi: 10.1016/j.biomaterials.2009.09.073. Epub 2009 Oct 6. PMID: 19811818.
  15. Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17-34. doi: 10.1159/000093928. PMID: 16766878.
  16.  Privolnev VV, Zabrosaev VS, Danilenkov NV. Silver in topical treatment of infected wounds. Vestnik of the SSMA. 2015;14(3):85-91. (In Russ.)
  17. Randall CP, Oyama LB, Bostock JM, Chopra I, O'Neill AJ. The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother. 2013 Jan;68(1):131-8. doi: 10.1093/jac/dks372. Epub 2012 Sep 25. PMID: 23011288.
  18.  Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies. 2017;13:18-23. doi:10.1016/j.susmat.2017.08.001
  19. Yuan YG, Peng QL, Gurunathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int J Mol Sci. 2017 Mar 6;18(3):569. doi: 10.3390/ijms18030569. PMID: 28272303; PMCID: PMC5372585.
  20. Dovnar RI, Smotrin SM. Application of silver in medicine: historical aspects and modern view on the problem. Problemy zdorovʹâ i èkologii. 2011;3:149-153. doi:10.51523/2708-6011.2011-8-3-30. (In Russ.)
  21. Rodin AV, Golub AV, Privolnev VV. Topical administration of sulfathiazole silver in the treatment of chronic wounds. RMJ. Medical Review. 2018;12:19-23. (In Russ.)
  22. Konop M, Damps T, Misicka A, Rudnicka L. Certain Aspects of Silver and Silver Nanoparticles in Wound Care: A Minireview. Journal of Nanomaterials. 2016;7614753:47. doi: 10.1155/2016/7614753
  23. Seong M, Lee DG. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Curr Microbiol. 2017 Jun;74(6):661-670. doi: 10.1007/s00284-017-1235-9. Epub 2017 Mar 21. PMID: 28321528.
  24. Khalandi B, Asadi N, Milani M, Davaran S, Abadi AJ, Abasi E, Akbarzadeh A. A Review on Potential Role of Silver Nanoparticles and Possible Mechanisms of their Actions on Bacteria. Drug Res (Stuttg). 2017 Feb;67(2):70-76. doi: 10.1055/s-0042-113383. Epub 2016 Nov 7. PMID: 27824432.
  25. Rajesha S, Dharanishanthiband V, Kanna AV. Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. Journal of Experimental Nanoscience. 2015;10(15):1143-1152. doi:10.1080/17458080.2014.985750
  26. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018 Jun 5;13:3311-3327. doi: 10.2147/IJN.S165125. PMID: 29892194; PMCID: PMC5993028.
  27. Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 2019 Jan 21;20(2):449. doi: 10.3390/ijms20020449. PMID: 30669621; PMCID: PMC6359645.
  28. Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M. Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis. 2015 Jan;30(1):59-66. doi: 10.1093/mutage/geu057. PMID: 25527729.
  29. López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem. 2013 Jan 9;61(1):260-7. doi: 10.1021/jf304006y. Epub 2012 Dec 20. PMID: 23214988.
  30. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012 Sep;39(9):9193-201. doi: 10.1007/s11033-012-1792-8. Epub 2012 Jun 22. PMID: 22722996; PMCID: PMC7089021.
  31. Zhao R, Lv M, Li Y, Sun M, Kong W, Wang L, Song S, Fan C, Jia L, Qiu S, Sun Y, Song H, Hao R. Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. ACS Appl Mater Interfaces. 2017 May 10;9(18):15328-15341. doi: 10.1021/acsami.7b03987. Epub 2017 Apr 28. PMID: 28422486.
  32. Gomaa EZ. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol. 2017 Mar 17;63(1):36-43. doi: 10.2323/jgam.2016.07.004. Epub 2017 Jan 24. PMID: 28123131.
  33. Siritongsuk P, Hongsing N, Thammawithan S, Daduang S, Klaynongsruang S, Tuanyok A, Patramanon R. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei. PLoS One. 2016 Dec 15;11(12):e0168098. doi: 10.1371/journal.pone.0168098. PMID: 27977746; PMCID: PMC5158019.
  34. Yuan YG, Peng QL, Gurunathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int J Mol Sci. 2017 Mar 6;18(3):569. doi: 10.3390/ijms18030569. PMID: 28272303; PMCID: PMC5372585.
  35. Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD, Dung TNB, Kannapiran E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep (Amst). 2017 Feb 10;14:1-7. doi: 10.1016/j.btre.2017.02.001. PMID: 28459002; PMCID: PMC5397105.
  36. Long YM, Hu LG, Yan XT, Zhao XC, Zhou QF, Cai Y, Jiang GB. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomedicine. 2017 Apr 18;12:3193-3206. doi: 10.2147/IJN.S132327. PMID: 28458540; PMCID: PMC5402892.
  37. Korshed P, Li L, Liu Z, Wang T. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells. PLoS One. 2016 Aug 30;11(8):e0160078. doi: 10.1371/journal.pone.0160078. Erratum in: PLoS One. 2018 Aug 30;13(8):e0203636. PMID: 27575485; PMCID: PMC5004859.
  38. Lee W, Kim KJ, Lee DG. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals. 2014 Dec;27(6):1191-201. doi: 10.1007/s10534-014-9782-z. Epub 2014 Aug 8. PMID: 25104311.
  39. Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018 Jul;7(13):e1701503. doi: 10.1002/adhm.201701503. Epub 2018 May 29. PMID: 29808627.
  40. Gladkih PG. Effect of silver nanoparticles on biofilms of microorganisms (Review). Journal of New Medical Technologies, eEdition.  2015;1. doi:10.12737/8117. (In Russ.)
  41.  Gladkih PG. Effect of silver nanoparticles in combination with methyluracil on the biofilms in an experimental model of peritonitis in rats. Journal of New Medical Technologies, eEdition.  2016;2. doi: 10.12737/20408. (In Russ.)
  42. Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxicol Environ Health A. 2017;80(23-24):1276-1289. doi: 10.1080/15287394.2017.1376727. Epub 2017 Oct 11. PMID: 29020531.
  43. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018 Jan;13(1):65-71. doi: 10.1038/s41565-017-0013-y. Epub 2017 Dec 4. PMID: 29203912.
  44. Sütterlin S, Dahlö M, Tellgren-Roth C, Schaal W, Melhus Å. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. J Hosp Infect. 2017 Jul;96(3):256-261. doi: 10.1016/j.jhin.2017.04.017. Epub 2017 Apr 26. PMID: 28506673.
  45. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel). 2013 Jun 5;6(6):2295-2350. doi: 10.3390/ma6062295. PMID: 28809275; PMCID: PMC5458943.
  46. Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 2019 Jan 21;20(2):449. doi: 10.3390/ijms20020449. PMID: 30669621; PMCID: PMC6359645.
  47. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016 Nov 16;7:1831. doi: 10.3389/fmicb.2016.01831. PMID: 27899918; PMCID: PMC5110546.
  48.  Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, Cameotra SS. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Basic Microbiol. 2014 Sep;54(9):905-15. doi: 10.1002/jobm.201300457. Epub 2013 Sep 11. PMID: 24026946.
  49. Van Der Wal A, Norde W, Zehnder AJB, Lyklema J. Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf B Biointerfaces1997;9(1–2):81–100. 
  50. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012 Sep;39(9):9193-201. doi: 10.1007/s11033-012-1792-8. Epub 2012 Jun 22. PMID: 22722996; PMCID: PMC7089021.
  51. Rodin AV, Privolnev VV, Barsukov AN. Therapeutic potential of sulfathiazole silver for topical treatment of wound infection. Ambulatory Surgery. 2018;1–2:69-70. (In Russ.)
  52. Khansa I, Schoenbrunner AR, Kraft CT, Janis JE. Silver in Wound Care-Friend or Foe?: A Comprehensive Review. Plast Reconstr Surg Glob Open. 2019 Aug 12;7(8):e2390. doi: 10.1097/GOX.0000000000002390. PMID: 31592393; PMCID: PMC6756674.
  53. Aparna Mani KM, Seethalakshmi S, Gopal V. Evaluation of in-vitro anti-inflammatory activity of silver nanoparticles synthesised using piper nigrum extract. Journal of Nanomedicine & Nanotechnology. 2015;6:2. doi:10.4172/2157-7439.1000268
  54. Dissemond J, Böttrich JG, Braunwarth H, Hilt J, Wilken P, Münter KC. Evidence for silver in wound care - meta-analysis of clinical studies from 2000-2015. J Dtsch Dermatol Ges. 2017 May;15(5):524-535. doi: 10.1111/ddg.13233. PMID: 28485879.
  55. McCague A, Joe VC. A Case of Argyria and Acute Leukopenia Associated with the Use of an Antimicrobial Soft Silicone Foam Dressing. J Burn Care Res. 2016 Sep-Oct;37(5):e493-6. doi: 10.1097/BCR.0000000000000275. PMID: 26284628.
  56.  Wang XQ, Chang HE, Francis R, Olszowy H, Liu PY, Kempf M, Cuttle L, Kravchuk O, Phillips GE, Kimble RM. Silver deposits in cutaneous burn scar tissue is a common phenomenon following application of a silver dressing. J Cutan Pathol. 2009 Jul;36(7):788-92. doi: 10.1111/j.1600-0560.2008.01141.x. PMID: 19519610.
  57. Zou SB, Yoon WY, Han SK, Jeong SH, Cui ZJ, Kim WK. Cytotoxicity of silver dressings on diabetic fibroblasts. Int Wound J. 2013 Jun;10(3):306-12. doi: 10.1111/j.1742-481X.2012.00977.x. Epub 2012 Apr 26. PMID: 22533495; PMCID: PMC7950609.
  58. Chuangsuwanich A, Charnsanti O, Lohsiriwat V, Kangwanpoom C, Thong-In N. The efficacy of silver mesh dressing compared with silver sulfadiazine cream for the treatment of pressure ulcers. J Med Assoc Thai. 2011 May;94(5):559-65. PMID: 21675444.
  59.  Beele H, Meuleneire F, Nahuys M, Percival SL. A prospective randomised open label study to evaluate the potential of a new silver alginate/carboxymethylcellulose antimicrobial wound dressing to promote wound healing. Int Wound J. 2010 Aug;7(4):262-70. doi: 10.1111/j.1742-481X.2010.00669.x. Epub 2010 May 31. PMID: 20529142; PMCID: PMC7951269.
  60.  Eberlein T, Haemmerle G, Signer M, Gruber Moesenbacher U, Traber J, Mittlboeck M, Abel M, Strohal R. Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. J Wound Care. 2012 Jan;21(1):12, 14-6, 18-20. doi: 10.12968/jowc.2012.21.1.12. PMID: 22240928.
  61. Siegel HJ, Herrera DF, Gay J. Silver negative pressure dressing with vacuum-assisted closure of massive pelvic and extremity wounds. Clin Orthop Relat Res. 2014 Mar;472(3):830-5. doi: 10.1007/s11999-013-3123-3. PMID: 23813240; PMCID: PMC3916586.
  62. Krieger BR, Davis DM, Sanchez JE, Mateka JJ, Nfonsam VN, Frattini JC, Marcet JE. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Dis Colon Rectum. 2011 Aug;54(8):1014-9. doi: 10.1097/DCR.0b013e31821c495d. PMID: 21730792.
  63. Siah CJ, Yatim J. Efficacy of a total occlusive ionic silver-containing dressing combination in decreasing risk of surgical site infection: an RCT. J Wound Care. 2011 Dec;20(12):561-8. doi: 10.12968/jowc.2011.20.12.561. PMID: 22240882.
  64. Tomasello G, Bellavia M, Damiani F, Damiano G, Palumbo VD, Fiorentini T, Puleio R, Spinelli G, Damiani P, Ficarella S, Bruno A, Lo Monte AI. Argentum-quarz solution in the treatment of anorectal fistulas: is it possible a conservative approach? Med Hypotheses. 2012 Oct;79(4):542-3. doi: 10.1016/j.mehy.2012.07.015. Epub 2012 Aug 3. PMID: 22867866.
  65. Bailey S, Carmean M, Cinat M, Burton K, Lane C, Malinoski D. A randomized comparison study of Aquacel Ag and Glucan II as donor site dressings with regard to healing time, cosmesis, infection rate, and patient's perceived pain: a pilot study. J Burn Care Res. 2011 Nov-Dec;32(6):627-32. doi: 10.1097/BCR.0b013e31822dc409. PMID: 21844815.
  66.  Lohsiriwat V, Chuangsuwanich A. Comparison of the ionic silver-containing hydrofiber and paraffin gauze dressing on split-thickness skin graft donor sites. Ann Plast Surg. 2009 Apr;62(4):421-2. doi: 10.1097/SAP.0b013e31818a65e9. PMID: 19325350.
  67.  Pei Z, Sun Q, Sun X, Wang Y, Zhao P. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng. 2015;26 Suppl 1:S111-8. doi: 10.3233/BME-151296. PMID: 26405868.
  68.  Fries CA, Ayalew Y, Penn-Barwell JG, Porter K, Jeffery SL, Midwinter MJ. Prospective randomised controlled trial of nanocrystalline silver dressing versus plain gauze as the initial post-debridement management of military wounds on wound microbiology and healing. Injury. 2014 Jul;45(7):1111-6. doi: 10.1016/j.injury.2013.12.005. Epub 2013 Dec 17. PMID: 24485549.
  69. Jenwitheesuk K, Surakunprapha P, Chowchuen B. The use of nanocrystalline silver for the treatment of massive soft tissue defects with exposed bone. J Med Assoc Thai. 2013 Sep;96 Suppl 4:S177-84. PMID: 24386759.
  70.  Guthrie KM, Agarwal A, Tackes DS, Johnson KW, Abbott NL, Murphy CJ, Czuprynski CJ, Kierski PR, Schurr MJ, McAnulty JF. Antibacterial efficacy of silver-impregnated polyelectrolyte multilayers immobilized on a biological dressing in a murine wound infection model. Ann Surg. 2012 Aug;256(2):371-7. doi: 10.1097/SLA.0b013e318256ff99. PMID: 22609841; PMCID: PMC3433034.
  71.  Keen JS, Desai PP, Smith CS, Suk M. Efficacy of hydrosurgical debridement and nanocrystalline silver dressings for infection prevention in type II and III open injuries. Int Wound J. 2012 Feb;9(1):7-13. doi: 10.1111/j.1742-481X.2011.00822.x. Epub 2011 Nov 10. PMID: 22074560; PMCID: PMC7950335.
  72. Asz J, Asz D, Moushey R, Seigel J, Mallory SB, Foglia RP. Treatment of toxic epidermal necrolysis in a pediatric patient with a nanocrystalline silver dressing. J Pediatr Surg. 2006 Dec;41(12):e9-12. doi: 10.1016/j.jpedsurg.2006.08.043. PMID: 17161178.
  73.  Dhapte V, Kadam S, Moghe A, Pokharkar V. Probing the wound healing potential of biogenic silver nanoparticles. J Wound Care. 2014 Sep;23(9):431-2, 434, 436 passim. doi: 10.12968/jowc.2014.23.9.431. PMID: 25284295.
  74.  Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014 Apr;65:509-15. doi: 10.1016/j.ijbiomac.2014.01.071. Epub 2014 Feb 11. PMID: 24530328.
  75.  Singh D, Singh A, Singh R. Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing. J Biomater Sci Polym Ed. 2015;26(17):1269-85. doi: 10.1080/09205063.2015.1087366. Epub 2015 Sep 23. PMID: 26397966.
  76. Im AR, Kim JY, Kim HS, Cho S, Park Y, Kim YS. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology. 2013 Oct 4;24(39):395102. doi: 10.1088/0957-4484/24/39/395102. Epub 2013 Sep 5. PMID: 24008263.
  77.  GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, Samarikhalaj M, Thomas RG, Jeong YY, Nasseri S, Murugesan P, Wu D, Hee Park C, Kim CS. Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12176-83. doi: 10.1021/acsami.5b02542. Epub 2015 May 29. PMID: 25989513.
  78.  Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater. 2014 Jun;9(3):035005. doi: 10.1088/1748-6041/9/3/035005. Epub 2014 Apr 16. PMID: 24739469.
  79.  Rangasamy S, Tak YK, Kim S, Paul A, Song JM. Bifunctional Therapeutic High-Valence Silver-Pyridoxine Nanoparticles with Proliferative and Antibacterial Wound-Healing Activities. J Biomed Nanotechnol. 2016 Jan;12(1):182-96. doi: 10.1166/jbn.2016.2179. PMID: 27301183.
  80.  Abdel-Mohsen AM, Jancar J, Abdel-Rahman RM, Vojtek L, Hyršl P, Dušková M, Nejezchlebová H. A novel in situ silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: In vitro and in vivo evaluations. Int J Pharm. 2017 Mar 30;520(1-2):241-253. doi: 10.1016/j.ijpharm.2017.02.003. Epub 2017 Feb 3. PMID: 28163228.
  81. Li C, Fu R, Yu C, Li Z, Guan H, Hu D, Zhao D, Lu L. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int J Nanomedicine. 2013;8:4131-45. doi: 10.2147/IJN.S51679. Epub 2013 Nov 1. PMID: 24204142; PMCID: PMC3818021.
  82. Li CW, Wang Q, Li J, Hu M, Shi SJ, Li ZW, Wu GL, Cui HH, Li YY, Zhang Q, Yu XH, Lu LC. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway. Int J Nanomedicine. 2016 Jan 21;11:373-86. doi: 10.2147/IJN.S91975. PMID: 26855575; PMCID: PMC4725631.
  83. Zhang R, Lee P, Lui VC, Chen Y, Liu X, Lok CN, To M, Yeung KW, Wong KK. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015 Nov;11(8):1949-59. doi: 10.1016/j.nano.2015.07.016. Epub 2015 Aug 15. PMID: 26282383.
  84. Liu X, Hao W, Lok CN, Wang YC, Zhang R, Wong KK. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg. 2014 Dec;49(12):1846-51. doi: 10.1016/j.jpedsurg.2014.09.033. Epub 2014 Oct 1. PMID: 25487498.
  85.  Shulgina TA, Nechaeva OV, Glinskaya EV, Daryin NI, Torgashova AS, Teslyuk DA, Babailova AV, Panfilova EA. Antimycotic Activity of Silver Nanoparticles Depending on the Stabilizer Used. Izv. Saratov Univ. (N.S.), Ser. Chemistry. Biology. Ecology. 2017;17(4):465-468. doi: 10.18500/1816-9775-2017-17-4-465-468. (In Russ.)
  86.  Riabushko VI, Yurkova IM, Riabushko LI, Estrela-Lopys VR, inventors; Riabushko VI, Yurkova IM, Riabushko LI, Estrela-Lopys VR, assignees. The method of obtaining a water-soluble bactericidal composition containing silver nanoparticles. Ukraine patent UA 10539. 2005 November 15. (In Ukrainian).
  87.  Mohanta YK, Biswas K, Jena SK, Hashem A, Abd Allah EF, Mohanta TK. Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants. Front Microbiol. 2020 Jun 23;11:1143. doi: 10.3389/fmicb.2020.01143. Erratum in: Front Microbiol. 2020 Sep 11;11:1784. PMID: 32655511; PMCID: PMC7324531.

Download Article
Received March 12, 2024.
Accepted May 25, 2024.
©2024 International Medical Research and Development Corporation.